| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubg3.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 3 |
2
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 5 |
2
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 7 |
6
|
a1i |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 8 |
|
ne0i |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → 𝑆 ≠ ∅ ) |
| 9 |
|
id |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 10 |
8 9
|
2thd |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 𝑆 ≠ ∅ ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ≠ ∅ ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 12 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 14 |
11 13
|
3anbi23d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 15 |
|
anass |
⊢ ( ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 16 |
|
df-3an |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 17 |
16
|
anbi1i |
⊢ ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 18 |
|
df-3an |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 19 |
15 17 18
|
3bitr4ri |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 20 |
14 19
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 23 |
21 22 1
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 25 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 26 |
21 2 22
|
issubm |
⊢ ( 𝐺 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 28 |
27
|
anbi1d |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 30 |
20 24 29
|
3bitr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 31 |
30
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 32 |
4 7 31
|
pm5.21ndd |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |