| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubg4.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
issubg4.p |
⊢ − = ( -g ‘ 𝐺 ) |
| 3 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 5 |
4
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 6 |
5
|
ne0d |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ≠ ∅ ) |
| 7 |
2
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 9 |
8
|
ralrimivva |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 10 |
3 6 9
|
3jca |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) ) |
| 11 |
|
simplrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 12 |
|
simplrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ≠ ∅ ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 − 𝑦 ) = ( ( 0g ‘ 𝐺 ) − 𝑦 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 17 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ ) |
| 18 |
|
r19.2z |
⊢ ( ( 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 19 |
17 18
|
sylan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 20 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 − 𝑦 ) = ( 𝑥 − 𝑥 ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 22 |
21
|
rspcv |
⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 24 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ⊆ 𝐵 ) |
| 25 |
24
|
sselda |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 26 |
1 4 2
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 28 |
25 27
|
syldan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝑥 ) ∈ 𝑆 ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 30 |
23 29
|
sylibd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 31 |
30
|
rexlimdva |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 33 |
19 32
|
syldan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 34 |
15 16 33
|
rspcdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) |
| 35 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 37 |
24
|
sselda |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 38 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 39 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 40 |
1 38 39 2
|
grpsubval |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 41 |
36 37 40
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 42 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 43 |
1 39
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 44 |
42 37 43
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 45 |
1 38 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 46 |
42 44 45
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 47 |
41 46
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 48 |
47
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 49 |
48
|
ralbidva |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 51 |
34 50
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) |
| 52 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) |
| 53 |
52
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) |
| 54 |
53
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 55 |
54
|
ad2ant2l |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 56 |
|
oveq2 |
⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 58 |
57
|
rspcv |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 59 |
55 58
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 60 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 61 |
|
simplrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
| 63 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) |
| 64 |
62 63
|
sseldd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 65 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
| 66 |
62 65
|
sseldd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝐵 ) |
| 67 |
1 38 2 39 60 64 66
|
grpsubinv |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 69 |
59 68
|
sylibd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 70 |
69
|
anassrs |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 71 |
70
|
ralrimdva |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 72 |
71
|
ralimdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 73 |
72
|
impancom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 74 |
51 73
|
mpd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 75 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 76 |
75
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 77 |
76
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 78 |
77
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 79 |
74 78
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 80 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ↔ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 81 |
79 51 80
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 82 |
11 12 81
|
3jca |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) |
| 83 |
82
|
exp42 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ⊆ 𝐵 → ( 𝑆 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) ) ) |
| 84 |
83
|
3impd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 85 |
1 38 39
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 86 |
84 85
|
sylibrd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 87 |
10 86
|
impbid2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) ) ) |