Description: Lemma for hhssabloilem . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubgoilem.1 | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| Assertion | issubgoilem | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐺 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgoilem.1 | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑦 ) = ( 𝐴 𝐻 𝑦 ) ) | |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ↔ ( 𝐴 𝐻 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐻 𝑦 ) = ( 𝐴 𝐻 𝐵 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐻 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ↔ ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐺 𝐵 ) ) ) |
| 8 | 4 7 1 | vtocl2ga | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐺 𝐵 ) ) |