Step |
Hyp |
Ref |
Expression |
1 |
|
issubgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
2 |
|
issubgr.a |
⊢ 𝐴 = ( Vtx ‘ 𝐺 ) |
3 |
|
issubgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝑆 ) |
4 |
|
issubgr.b |
⊢ 𝐵 = ( iEdg ‘ 𝐺 ) |
5 |
|
issubgr.e |
⊢ 𝐸 = ( Edg ‘ 𝑆 ) |
6 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Vtx ‘ 𝑠 ) = ( Vtx ‘ 𝑆 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( Vtx ‘ 𝑠 ) = ( Vtx ‘ 𝑆 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
10 |
7 9
|
sseq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ↔ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( iEdg ‘ 𝑠 ) = ( iEdg ‘ 𝑆 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( iEdg ‘ 𝑠 ) = ( iEdg ‘ 𝑆 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
15 |
11
|
dmeqd |
⊢ ( 𝑠 = 𝑆 → dom ( iEdg ‘ 𝑠 ) = dom ( iEdg ‘ 𝑆 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → dom ( iEdg ‘ 𝑠 ) = dom ( iEdg ‘ 𝑆 ) ) |
17 |
14 16
|
reseq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
18 |
12 17
|
eqeq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ↔ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Edg ‘ 𝑠 ) = ( Edg ‘ 𝑆 ) ) |
20 |
6
|
pweqd |
⊢ ( 𝑠 = 𝑆 → 𝒫 ( Vtx ‘ 𝑠 ) = 𝒫 ( Vtx ‘ 𝑆 ) ) |
21 |
19 20
|
sseq12d |
⊢ ( 𝑠 = 𝑆 → ( ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
23 |
10 18 22
|
3anbi123d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
24 |
|
df-subgr |
⊢ SubGraph = { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } |
25 |
23 24
|
brabga |
⊢ ( ( 𝑆 ∈ 𝑈 ∧ 𝐺 ∈ 𝑊 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
26 |
25
|
ancoms |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
27 |
1 2
|
sseq12i |
⊢ ( 𝑉 ⊆ 𝐴 ↔ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
28 |
3
|
dmeqi |
⊢ dom 𝐼 = dom ( iEdg ‘ 𝑆 ) |
29 |
4 28
|
reseq12i |
⊢ ( 𝐵 ↾ dom 𝐼 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) |
30 |
3 29
|
eqeq12i |
⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ↔ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
31 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝑆 ) |
32 |
5 31
|
sseq12i |
⊢ ( 𝐸 ⊆ 𝒫 𝑉 ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
33 |
27 30 32
|
3anbi123i |
⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
34 |
26 33
|
bitr4di |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |