Step |
Hyp |
Ref |
Expression |
1 |
|
issubgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
2 |
|
issubgr.a |
⊢ 𝐴 = ( Vtx ‘ 𝐺 ) |
3 |
|
issubgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝑆 ) |
4 |
|
issubgr.b |
⊢ 𝐵 = ( iEdg ‘ 𝐺 ) |
5 |
|
issubgr.e |
⊢ 𝐸 = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
issubgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
8 |
|
resss |
⊢ ( 𝐵 ↾ dom 𝐼 ) ⊆ 𝐵 |
9 |
|
sseq1 |
⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) → ( 𝐼 ⊆ 𝐵 ↔ ( 𝐵 ↾ dom 𝐼 ) ⊆ 𝐵 ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
11 |
|
funssres |
⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) |
12 |
11
|
eqcomd |
⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) |
13 |
12
|
ex |
⊢ ( Fun 𝐵 → ( 𝐼 ⊆ 𝐵 → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝐼 ⊆ 𝐵 → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) ) |
15 |
10 14
|
impbid2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ↔ 𝐼 ⊆ 𝐵 ) ) |
16 |
15
|
3anbi2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
17 |
7 16
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |