Step |
Hyp |
Ref |
Expression |
1 |
|
issubgrpd.s |
⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) |
2 |
|
issubgrpd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) |
3 |
|
issubgrpd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) |
4 |
|
issubgrpd.ss |
⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) |
5 |
|
issubgrpd.zcl |
⊢ ( 𝜑 → 0 ∈ 𝐷 ) |
6 |
|
issubgrpd.acl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
7 |
|
issubgrpd.ncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) |
8 |
|
issubgrpd.g |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
9 |
1 2 3 4 5 6 7 8
|
issubgrpd2 |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |
10 |
|
eqid |
⊢ ( 𝐼 ↾s 𝐷 ) = ( 𝐼 ↾s 𝐷 ) |
11 |
10
|
subggrp |
⊢ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) → ( 𝐼 ↾s 𝐷 ) ∈ Grp ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → ( 𝐼 ↾s 𝐷 ) ∈ Grp ) |
13 |
1 12
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |