Step |
Hyp |
Ref |
Expression |
1 |
|
issubgrpd.s |
⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) |
2 |
|
issubgrpd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) |
3 |
|
issubgrpd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) |
4 |
|
issubgrpd.ss |
⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) |
5 |
|
issubgrpd.zcl |
⊢ ( 𝜑 → 0 ∈ 𝐷 ) |
6 |
|
issubgrpd.acl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
7 |
|
issubgrpd.ncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) |
8 |
|
issubgrpd.g |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
9 |
5
|
ne0d |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
10 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
12 |
6
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
13 |
11 12
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
15 |
14 7
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
16 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) |
19 |
|
eqid |
⊢ ( invg ‘ 𝐼 ) = ( invg ‘ 𝐼 ) |
20 |
17 18 19
|
issubg2 |
⊢ ( 𝐼 ∈ Grp → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
21 |
8 20
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
22 |
4 9 16 21
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |