| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubgrpd.s |
⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) |
| 2 |
|
issubgrpd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) |
| 3 |
|
issubgrpd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) |
| 4 |
|
issubgrpd.ss |
⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) |
| 5 |
|
issubgrpd.zcl |
⊢ ( 𝜑 → 0 ∈ 𝐷 ) |
| 6 |
|
issubgrpd.acl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
| 7 |
|
issubgrpd.ncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) |
| 8 |
|
issubgrpd.g |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
| 9 |
5
|
ne0d |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 10 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
| 12 |
6
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
| 13 |
11 12
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 14 |
13
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 15 |
14 7
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 16 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 18 |
|
eqid |
⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) |
| 19 |
|
eqid |
⊢ ( invg ‘ 𝐼 ) = ( invg ‘ 𝐼 ) |
| 20 |
17 18 19
|
issubg2 |
⊢ ( 𝐼 ∈ Grp → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
| 21 |
8 20
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
| 22 |
4 9 16 21
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |