Step |
Hyp |
Ref |
Expression |
1 |
|
issubm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issubm.z |
⊢ 0 = ( 0g ‘ 𝑀 ) |
3 |
|
issubm.p |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
5 |
4
|
pweqd |
⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ 𝑚 ) = ( 0g ‘ 𝑀 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑡 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
9 |
8
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
11 |
10
|
2ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
12 |
7 11
|
anbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) ) |
13 |
5 12
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) } = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) |
14 |
|
df-submnd |
⊢ SubMnd = ( 𝑚 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) } ) |
15 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑀 ) ∈ V |
17 |
16
|
rabex |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝑀 ∈ Mnd → ( SubMnd ‘ 𝑀 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) |
19 |
18
|
eleq2d |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) ) |
20 |
|
eleq2 |
⊢ ( 𝑡 = 𝑆 → ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) ) |
21 |
|
eleq2 |
⊢ ( 𝑡 = 𝑆 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
22 |
21
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
23 |
22
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑡 = 𝑆 → ( ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
25 |
24
|
elrab |
⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
26 |
1
|
sseq2i |
⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
27 |
2
|
eleq1i |
⊢ ( 0 ∈ 𝑆 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) |
28 |
3
|
oveqi |
⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
29 |
28
|
eleq1i |
⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
30 |
29
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
31 |
27 30
|
anbi12i |
⊢ ( ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
32 |
26 31
|
anbi12i |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
33 |
|
3anass |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
34 |
15
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
35 |
34
|
anbi1i |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
36 |
32 33 35
|
3bitr4ri |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
37 |
25 36
|
bitri |
⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
38 |
19 37
|
bitrdi |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |