Step |
Hyp |
Ref |
Expression |
1 |
|
issubmd.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issubmd.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
issubmd.z |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
|
issubmd.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
5 |
|
issubmd.cz |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
issubmd.cp |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) |
7 |
|
issubmd.ch |
⊢ ( 𝑧 = 0 → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
issubmd.th |
⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) |
9 |
|
issubmd.ta |
⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) |
10 |
|
issubmd.et |
⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) |
11 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 |
12 |
11
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ) |
13 |
1 3
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
14 |
4 13
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
15 |
7 14 5
|
elrabd |
⊢ ( 𝜑 → 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
16 |
8
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ) |
17 |
9
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) |
18 |
16 17
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑀 ∈ Mnd ) |
20 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑥 ∈ 𝐵 ) |
21 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑦 ∈ 𝐵 ) |
22 |
1 2
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
24 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) |
25 |
24 6
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝜂 ) |
26 |
10 23 25
|
elrabd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
27 |
18 26
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
28 |
27
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
29 |
1 3 2
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
31 |
12 15 28 30
|
mpbir3and |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ) |