| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubmgm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
issubmgm.p |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
| 4 |
3
|
pweqd |
⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
| 6 |
5
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 8 |
7
|
2ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 9 |
4 8
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 } = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) |
| 10 |
|
df-submgm |
⊢ SubMgm = ( 𝑚 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 } ) |
| 11 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
| 12 |
11
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑀 ) ∈ V |
| 13 |
12
|
rabex |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ∈ V |
| 14 |
9 10 13
|
fvmpt |
⊢ ( 𝑀 ∈ Mgm → ( SubMgm ‘ 𝑀 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) ) |
| 16 |
11
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 17 |
16
|
anbi1i |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 18 |
|
eleq2 |
⊢ ( 𝑡 = 𝑆 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 19 |
18
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 20 |
19
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 21 |
20
|
elrab |
⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 22 |
1
|
sseq2i |
⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 23 |
2
|
oveqi |
⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
| 24 |
23
|
eleq1i |
⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 25 |
24
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 26 |
22 25
|
anbi12i |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 27 |
17 21 26
|
3bitr4i |
⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 28 |
15 27
|
bitrdi |
⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |