| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubmnd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | issubmnd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | issubmnd.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | issubmnd.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐻  ∈  Mnd ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 7 |  | simpll2 | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑆  ⊆  𝐵 ) | 
						
							| 8 | 4 1 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 10 | 6 9 | eleqtrd | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 11 |  | simprr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 12 | 11 9 | eleqtrd | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 15 | 13 14 | mndcl | ⊢ ( ( 𝐻  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝐻 )  ∧  𝑦  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 16 | 5 10 12 15 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 17 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 18 | 17 | ssex | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ∈  V ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  →  𝑆  ∈  V ) | 
						
							| 20 | 4 2 | ressplusg | ⊢ ( 𝑆  ∈  V  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 23 | 22 | oveqd | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 24 | 16 23 9 | 3eltr4d | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 25 | 24 | ralrimivva | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  𝐻  ∈  Mnd )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 26 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 27 | 26 8 | syl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 28 | 21 | adantr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 29 |  | ovrspc2v | ⊢ ( ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) | 
						
							| 30 | 29 | ancoms | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) | 
						
							| 31 | 30 | 3impb | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) | 
						
							| 32 | 31 | 3adant1l | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) | 
						
							| 33 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  𝐺  ∈  Mnd ) | 
						
							| 34 | 26 | sseld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝑢  ∈  𝑆  →  𝑢  ∈  𝐵 ) ) | 
						
							| 35 | 26 | sseld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝑣  ∈  𝑆  →  𝑣  ∈  𝐵 ) ) | 
						
							| 36 | 26 | sseld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝑤  ∈  𝑆  →  𝑤  ∈  𝐵 ) ) | 
						
							| 37 | 34 35 36 | 3anim123d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) | 
						
							| 39 | 1 2 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) ) | 
						
							| 40 | 33 38 39 | syl2an2r | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) ) | 
						
							| 41 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →   0   ∈  𝑆 ) | 
						
							| 42 | 26 | sselda | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  𝑢  ∈  𝑆 )  →  𝑢  ∈  𝐵 ) | 
						
							| 43 | 1 2 3 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑢  ∈  𝐵 )  →  (  0   +  𝑢 )  =  𝑢 ) | 
						
							| 44 | 33 42 43 | syl2an2r | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  𝑢  ∈  𝑆 )  →  (  0   +  𝑢 )  =  𝑢 ) | 
						
							| 45 | 1 2 3 | mndrid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑢  ∈  𝐵 )  →  ( 𝑢  +   0  )  =  𝑢 ) | 
						
							| 46 | 33 42 45 | syl2an2r | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  ∧  𝑢  ∈  𝑆 )  →  ( 𝑢  +   0  )  =  𝑢 ) | 
						
							| 47 | 27 28 32 40 41 44 46 | ismndd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  𝐻  ∈  Mnd ) | 
						
							| 48 | 25 47 | impbida | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  →  ( 𝐻  ∈  Mnd  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) ) |