| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubmndb.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | issubmndb.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( 𝐺  ↾s  𝑆 )  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 4 | 1 2 3 | issubm2 | ⊢ ( 𝐺  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) ) ) | 
						
							| 5 |  | 3anrot | ⊢ ( ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ↔  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 )  ↔  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) | 
						
							| 7 | 5 6 | bitr3i | ⊢ ( ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ↔  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) | 
						
							| 8 | 4 7 | bitrdi | ⊢ ( 𝐺  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) | 
						
							| 9 | 8 | pm5.32i | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑆  ∈  ( SubMnd ‘ 𝐺 ) )  ↔  ( 𝐺  ∈  Mnd  ∧  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) | 
						
							| 10 |  | submrcl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝐺  ∈  Mnd ) | 
						
							| 11 | 10 | pm4.71ri | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( 𝐺  ∈  Mnd  ∧  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) ) | 
						
							| 12 |  | anass | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ↔  ( 𝐺  ∈  Mnd  ∧  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) | 
						
							| 13 | 9 11 12 | 3bitr4i | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( ( 𝐺  ∈  Mnd  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) |