Step |
Hyp |
Ref |
Expression |
1 |
|
issubrg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
issubrg.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
df-subrg |
⊢ SubRing = ( 𝑟 ∈ Ring ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) } ) |
4 |
3
|
mptrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
5 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
8 |
7
|
pweqd |
⊢ ( 𝑟 = 𝑅 → 𝒫 ( Base ‘ 𝑟 ) = 𝒫 𝐵 ) |
9 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ↔ ( 𝑅 ↾s 𝑠 ) ∈ Ring ) ) |
11 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 1r ‘ 𝑟 ) ∈ 𝑠 ↔ 1 ∈ 𝑠 ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) ↔ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) ) ) |
15 |
8 14
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) |
16 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
17 |
16
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
18 |
17
|
rabex |
⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ∈ V |
19 |
15 3 18
|
fvmpt |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) |
20 |
19
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) ) |
21 |
|
oveq2 |
⊢ ( 𝑠 = 𝐴 → ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝐴 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑠 = 𝐴 → ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ↔ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ) |
23 |
|
eleq2 |
⊢ ( 𝑠 = 𝐴 → ( 1 ∈ 𝑠 ↔ 1 ∈ 𝐴 ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝑠 = 𝐴 → ( ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
25 |
24
|
elrab |
⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( 𝐴 ∈ 𝒫 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
26 |
16
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) |
27 |
26
|
anbi1i |
⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
28 |
|
an12 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
29 |
25 27 28
|
3bitri |
⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
30 |
|
ibar |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ↔ ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ) ) |
31 |
30
|
anbi1d |
⊢ ( 𝑅 ∈ Ring → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
32 |
29 31
|
syl5bb |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
33 |
20 32
|
bitrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
34 |
4 5 33
|
pm5.21nii |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |