| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubrg2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
issubrg2.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
issubrg2.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
subrgsubg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 5 |
2
|
subrg1cl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 1 ∈ 𝐴 ) |
| 6 |
3
|
subrgmcl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 7 |
6
|
3expb |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 8 |
7
|
ralrimivva |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 9 |
4 5 8
|
3jca |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 11 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
| 13 |
12
|
subgbas |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 16 |
12 15
|
ressplusg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 |
11 16
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 18 |
12 3
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 19 |
11 18
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 20 |
12
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 21 |
11 20
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 22 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑦 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑦 ) ∈ 𝐴 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 27 |
24 26
|
rspc2v |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 28 |
22 27
|
syl5com |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 29 |
28
|
3impib |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) |
| 30 |
1
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
| 31 |
11 30
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
| 32 |
31
|
sseld |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵 ) ) |
| 33 |
31
|
sseld |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵 ) ) |
| 34 |
31
|
sseld |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) |
| 35 |
32 33 34
|
3anim123d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 37 |
1 3
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 38 |
37
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 39 |
36 38
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 40 |
1 15 3
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 41 |
40
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 42 |
36 41
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 43 |
1 15 3
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 44 |
43
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 45 |
36 44
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 46 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 1 ∈ 𝐴 ) |
| 47 |
32
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐵 ) |
| 48 |
1 3 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 49 |
48
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 50 |
47 49
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 51 |
1 3 2
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 53 |
47 52
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 54 |
14 17 19 21 29 39 42 45 46 50 53
|
isringd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 55 |
31 46
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) |
| 56 |
1 2
|
issubrg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
| 57 |
10 54 55 56
|
syl21anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 58 |
57
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ) |
| 59 |
9 58
|
impbid2 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |