| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubrg3.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 5 | 2 3 4 | issubrg2 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝑅 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 7 | 5 6 | bitrdi | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝑅 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 8 | 1 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 9 | 2 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  →  𝑆  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 10 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑀 ) | 
						
							| 11 | 1 3 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 12 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 13 | 10 11 12 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 14 |  | 3anass | ⊢ ( ( 𝑆  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑅 )  ∧  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 15 | 13 14 | bitrdi | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑅 )  ∧  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 16 | 15 | baibd | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  ( Base ‘ 𝑅 ) )  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 17 | 8 9 16 | syl2an | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 18 | 17 | pm5.32da | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑆  ∈  ( SubMnd ‘ 𝑀 ) )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( ( 1r ‘ 𝑅 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 19 | 7 18 | bitr4d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝑅 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑆  ∈  ( SubMnd ‘ 𝑀 ) ) ) ) |