Step |
Hyp |
Ref |
Expression |
1 |
|
issubrg3.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
2 3 4
|
issubrg2 |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
7 |
5 6
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
8 |
1
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
9 |
2
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
10 |
1 2
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
11 |
1 3
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
12 |
1 4
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
13 |
10 11 12
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
14 |
|
3anass |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
15 |
13 14
|
bitrdi |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
16 |
15
|
baibd |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
17 |
8 9 16
|
syl2an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) |
18 |
17
|
pm5.32da |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑆 ) ) ) ) |
19 |
7 18
|
bitr4d |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |