Step |
Hyp |
Ref |
Expression |
1 |
|
issubrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
df-subrng |
⊢ SubRng = ( 𝑤 ∈ Rng ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Rng } ) |
3 |
2
|
mptrcl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
4 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) → 𝑅 ∈ Rng ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
6 |
5
|
pweqd |
⊢ ( 𝑟 = 𝑅 → 𝒫 ( Base ‘ 𝑟 ) = 𝒫 ( Base ‘ 𝑅 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ↾s 𝑠 ) ∈ Rng ↔ ( 𝑅 ↾s 𝑠 ) ∈ Rng ) ) |
9 |
6 8
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( 𝑟 ↾s 𝑠 ) ∈ Rng } = { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) |
10 |
|
df-subrng |
⊢ SubRng = ( 𝑟 ∈ Rng ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( 𝑟 ↾s 𝑠 ) ∈ Rng } ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
12 |
11
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑅 ) ∈ V |
13 |
12
|
rabex |
⊢ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ∈ V |
14 |
9 10 13
|
fvmpt |
⊢ ( 𝑅 ∈ Rng → ( SubRng ‘ 𝑅 ) = { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) |
15 |
14
|
eleq2d |
⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) ) |
16 |
|
oveq2 |
⊢ ( 𝑠 = 𝐴 → ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝐴 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑠 = 𝐴 → ( ( 𝑅 ↾s 𝑠 ) ∈ Rng ↔ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ) |
18 |
17
|
elrab |
⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ↔ ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ) |
19 |
1
|
eqcomi |
⊢ ( Base ‘ 𝑅 ) = 𝐵 |
20 |
19
|
sseq2i |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ↔ 𝐴 ⊆ 𝐵 ) |
21 |
20
|
anbi2i |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
22 |
|
ibar |
⊢ ( 𝑅 ∈ Rng → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) ) |
23 |
21 22
|
bitrid |
⊢ ( 𝑅 ∈ Rng → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) ) |
24 |
11
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ↔ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
25 |
24
|
anbi2ci |
⊢ ( ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ) |
26 |
|
3anass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
27 |
23 25 26
|
3bitr4g |
⊢ ( 𝑅 ∈ Rng → ( ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
28 |
18 27
|
bitrid |
⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
29 |
15 28
|
bitrd |
⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
30 |
3 4 29
|
pm5.21nii |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |