Step |
Hyp |
Ref |
Expression |
1 |
|
issubrng2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
issubrng2.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
subrngsubg |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
4 |
2
|
subrngmcl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
5 |
4
|
3expb |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
6 |
5
|
ralrimivva |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
7 |
3 6
|
jca |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
8 |
|
simpl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝑅 ∈ Rng ) |
9 |
|
simprl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
11 |
10
|
subgbas |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
14 |
10 13
|
ressplusg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
15 |
9 14
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
16 |
10 2
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
17 |
9 16
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
18 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
19 |
10
|
subgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Abel ) |
20 |
18 9 19
|
syl2an2r |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Abel ) |
21 |
|
simprr |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑦 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑦 ) ∈ 𝐴 ) ) |
24 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
26 |
23 25
|
rspc2v |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
27 |
21 26
|
syl5com |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
28 |
27
|
3impib |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) |
29 |
1
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
30 |
9 29
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
31 |
30
|
sseld |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵 ) ) |
32 |
30
|
sseld |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵 ) ) |
33 |
30
|
sseld |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) |
34 |
31 32 33
|
3anim123d |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
36 |
1 2
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
38 |
35 37
|
syldan |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
39 |
1 13 2
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
41 |
35 40
|
syldan |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
42 |
1 13 2
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
44 |
35 43
|
syldan |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
45 |
12 15 17 20 28 38 41 44
|
isrngd |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
46 |
1
|
issubrng |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
47 |
8 45 30 46
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) |
48 |
47
|
ex |
⊢ ( 𝑅 ∈ Rng → ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) ) |
49 |
7 48
|
impbid2 |
⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |