| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubrng2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | issubrng2.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | subrngsubg | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 4 | 2 | subrngmcl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ·  𝑦 )  ∈  𝐴 ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝐴 ) | 
						
							| 6 | 5 | ralrimivva | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) | 
						
							| 7 | 3 6 | jca | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  𝑅  ∈  Rng ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  𝐴  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑅  ↾s  𝐴 )  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 11 | 10 | subgbas | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  →  𝐴  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  𝐴  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 14 | 10 13 | ressplusg | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 15 | 9 14 | syl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 16 | 10 2 | ressmulr | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  →   ·   =  ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 17 | 9 16 | syl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →   ·   =  ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 18 |  | rngabl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel ) | 
						
							| 19 | 10 | subgabl | ⊢ ( ( 𝑅  ∈  Abel  ∧  𝐴  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝑅  ↾s  𝐴 )  ∈  Abel ) | 
						
							| 20 | 18 9 19 | syl2an2r | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( 𝑅  ↾s  𝐴 )  ∈  Abel ) | 
						
							| 21 |  | simprr | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑦 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥  ·  𝑦 )  ∈  𝐴  ↔  ( 𝑢  ·  𝑦 )  ∈  𝐴 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑢  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢  ·  𝑦 )  ∈  𝐴  ↔  ( 𝑢  ·  𝑣 )  ∈  𝐴 ) ) | 
						
							| 26 | 23 25 | rspc2v | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴  →  ( 𝑢  ·  𝑣 )  ∈  𝐴 ) ) | 
						
							| 27 | 21 26 | syl5com | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑢  ·  𝑣 )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | 3impib | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 𝑢  ·  𝑣 )  ∈  𝐴 ) | 
						
							| 29 | 1 | subgss | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 30 | 9 29 | syl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 31 | 30 | sseld | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( 𝑢  ∈  𝐴  →  𝑢  ∈  𝐵 ) ) | 
						
							| 32 | 30 | sseld | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( 𝑣  ∈  𝐴  →  𝑣  ∈  𝐵 ) ) | 
						
							| 33 | 30 | sseld | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( 𝑤  ∈  𝐴  →  𝑤  ∈  𝐵 ) ) | 
						
							| 34 | 31 32 33 | 3anim123d | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) | 
						
							| 36 | 1 2 | rngass | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  ·  𝑣 )  ·  𝑤 )  =  ( 𝑢  ·  ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 37 | 36 | adantlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  ·  𝑣 )  ·  𝑤 )  =  ( 𝑢  ·  ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 38 | 35 37 | syldan | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ( 𝑢  ·  𝑣 )  ·  𝑤 )  =  ( 𝑢  ·  ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 39 | 1 13 2 | rngdi | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑢  ·  ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) )  =  ( ( 𝑢  ·  𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢  ·  𝑤 ) ) ) | 
						
							| 40 | 39 | adantlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑢  ·  ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) )  =  ( ( 𝑢  ·  𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢  ·  𝑤 ) ) ) | 
						
							| 41 | 35 40 | syldan | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( 𝑢  ·  ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) )  =  ( ( 𝑢  ·  𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢  ·  𝑤 ) ) ) | 
						
							| 42 | 1 13 2 | rngdir | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  ·  𝑤 )  =  ( ( 𝑢  ·  𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  ·  𝑤 )  =  ( ( 𝑢  ·  𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 44 | 35 43 | syldan | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  ∧  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  ·  𝑤 )  =  ( ( 𝑢  ·  𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣  ·  𝑤 ) ) ) | 
						
							| 45 | 12 15 17 20 28 38 41 44 | isrngd | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  ( 𝑅  ↾s  𝐴 )  ∈  Rng ) | 
						
							| 46 | 1 | issubrng | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ↔  ( 𝑅  ∈  Rng  ∧  ( 𝑅  ↾s  𝐴 )  ∈  Rng  ∧  𝐴  ⊆  𝐵 ) ) | 
						
							| 47 | 8 45 30 46 | syl3anbrc | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) )  →  𝐴  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( 𝑅  ∈  Rng  →  ( ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 )  →  𝐴  ∈  ( SubRng ‘ 𝑅 ) ) ) | 
						
							| 49 | 7 48 | impbid2 | ⊢ ( 𝑅  ∈  Rng  →  ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ↔  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ·  𝑦 )  ∈  𝐴 ) ) ) |