Step |
Hyp |
Ref |
Expression |
1 |
|
issubrngd.s |
⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) |
2 |
|
issubrngd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) |
3 |
|
issubrngd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) |
4 |
|
issubrngd.ss |
⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) |
5 |
|
issubrngd.zcl |
⊢ ( 𝜑 → 0 ∈ 𝐷 ) |
6 |
|
issubrngd.acl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
7 |
|
issubrngd.ncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) |
8 |
|
issubrngd.o |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐼 ) ) |
9 |
|
issubrngd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝐼 ) ) |
10 |
|
issubrngd.ocl |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |
11 |
|
issubrngd.tcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) |
12 |
|
issubrngd.g |
⊢ ( 𝜑 → 𝐼 ∈ Ring ) |
13 |
|
ringgrp |
⊢ ( 𝐼 ∈ Ring → 𝐼 ∈ Grp ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
15 |
1 2 3 4 5 6 7 14
|
issubgrpd2 |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |
16 |
8 10
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐼 ) ∈ 𝐷 ) |
17 |
9
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ) |
18 |
11
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) |
19 |
17 18
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
20 |
19
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝐼 ) = ( 1r ‘ 𝐼 ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
24 |
21 22 23
|
issubrg2 |
⊢ ( 𝐼 ∈ Ring → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
25 |
12 24
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
26 |
15 16 20 25
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( SubRing ‘ 𝐼 ) ) |