| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 3 | 2 | ist0 | ⊢ ( 𝐽  ∈  Kol2  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 4 | 3 | baib | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  ∈  Kol2  ↔  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Kol2  ↔  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 6 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 8 | 6 7 | raleqbidv | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 9 | 5 8 | bitr4d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Kol2  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) |