Step |
Hyp |
Ref |
Expression |
1 |
|
ist0-2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
2 |
|
con34b |
⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
3 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
4 |
|
xor |
⊢ ( ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ) ) |
5 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ↔ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) |
6 |
5
|
orbi2i |
⊢ ( ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
7 |
4 6
|
bitri |
⊢ ( ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑜 ∈ 𝐽 ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
9 |
|
rexnal |
⊢ ( ∃ 𝑜 ∈ 𝐽 ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) |
10 |
8 9
|
bitr3i |
⊢ ( ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) |
11 |
3 10
|
imbi12i |
⊢ ( ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
12 |
2 11
|
bitr4i |
⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) |
13 |
12
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) |
14 |
1 13
|
bitrdi |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) ) |