Metamath Proof Explorer


Theorem ist0-3

Description: The predicate "is a T_0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion ist0-3 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ist0-2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
2 con34b ( ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) ) )
3 df-ne ( 𝑥𝑦 ↔ ¬ 𝑥 = 𝑦 )
4 xor ( ¬ ( 𝑥𝑜𝑦𝑜 ) ↔ ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( 𝑦𝑜 ∧ ¬ 𝑥𝑜 ) ) )
5 ancom ( ( 𝑦𝑜 ∧ ¬ 𝑥𝑜 ) ↔ ( ¬ 𝑥𝑜𝑦𝑜 ) )
6 5 orbi2i ( ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( 𝑦𝑜 ∧ ¬ 𝑥𝑜 ) ) ↔ ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) )
7 4 6 bitri ( ¬ ( 𝑥𝑜𝑦𝑜 ) ↔ ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) )
8 7 rexbii ( ∃ 𝑜𝐽 ¬ ( 𝑥𝑜𝑦𝑜 ) ↔ ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) )
9 rexnal ( ∃ 𝑜𝐽 ¬ ( 𝑥𝑜𝑦𝑜 ) ↔ ¬ ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) )
10 8 9 bitr3i ( ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ↔ ¬ ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) )
11 3 10 imbi12i ( ( 𝑥𝑦 → ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) ) )
12 2 11 bitr4i ( ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝑦 → ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ) )
13 12 2ralbii ( ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ) )
14 1 13 bitrdi ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑜𝐽 ( ( 𝑥𝑜 ∧ ¬ 𝑦𝑜 ) ∨ ( ¬ 𝑥𝑜𝑦𝑜 ) ) ) ) )