| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
| 2 |
1
|
kqfeq |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 3 |
2
|
3expb |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 4 |
3
|
imbi1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) |
| 5 |
4
|
2ralbidva |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) |
| 6 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 7 |
|
dffn2 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 ⟶ V ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 ⟶ V ) |
| 9 |
|
dff13 |
⊢ ( 𝐹 : 𝑋 –1-1→ V ↔ ( 𝐹 : 𝑋 ⟶ V ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 10 |
9
|
baib |
⊢ ( 𝐹 : 𝑋 ⟶ V → ( 𝐹 : 𝑋 –1-1→ V ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋 –1-1→ V ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 12 |
|
ist0-2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) |
| 13 |
5 11 12
|
3bitr4rd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋 –1-1→ V ) ) |