Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
3 |
2
|
ist1 |
⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
4 |
3
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Fre ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
6 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
7 |
6
|
raleqdv |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
9 |
|
eltop2 |
⊢ ( 𝐽 ∈ Top → ( ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
11 |
6
|
eleq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝐽 ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∪ 𝐽 ) |
13 |
12
|
snssd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → { 𝑦 } ⊆ ∪ 𝐽 ) |
14 |
2
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 } ⊆ ∪ 𝐽 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
17 |
16
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
18 |
17
|
imbi1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) ) |
19 |
|
con1b |
⊢ ( ( ¬ 𝑥 = 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) → 𝑥 = 𝑦 ) ) |
20 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
21 |
20
|
imbi1i |
⊢ ( ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
22 |
|
disjsn |
⊢ ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑜 ) |
23 |
|
elssuni |
⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) |
24 |
|
reldisj |
⊢ ( 𝑜 ⊆ ∪ 𝐽 → ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑜 ∈ 𝐽 → ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
26 |
22 25
|
bitr3id |
⊢ ( 𝑜 ∈ 𝐽 → ( ¬ 𝑦 ∈ 𝑜 ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑜 ∈ 𝐽 → ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
28 |
27
|
rexbiia |
⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
29 |
|
rexanali |
⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) |
30 |
28 29
|
bitr3i |
⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) |
31 |
30
|
con2bii |
⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
32 |
31
|
imbi1i |
⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) → 𝑥 = 𝑦 ) ) |
33 |
19 21 32
|
3bitr4ri |
⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
34 |
33
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝑋 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
35 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) |
36 |
35
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
37 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
38 |
36 37
|
bitri |
⊢ ( ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
39 |
18 34 38
|
3bitr4g |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
40 |
39
|
ralbidv2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
41 |
10 15 40
|
3bitr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
42 |
41
|
ralbidva |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
43 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
44 |
42 43
|
bitrdi |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
45 |
5 7 44
|
3bitr2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |