| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 3 | 2 | ist1 | ⊢ ( 𝐽  ∈  Fre  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  ∪  𝐽 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 4 | 3 | baib | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑦  ∈  ∪  𝐽 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑦  ∈  ∪  𝐽 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 6 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑦  ∈  ∪  𝐽 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 9 |  | eltop2 | ⊢ ( 𝐽  ∈  Top  →  ( ( ∪  𝐽  ∖  { 𝑦 } )  ∈  𝐽  ↔  ∀ 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } ) ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ∪  𝐽  ∖  { 𝑦 } )  ∈  𝐽  ↔  ∀ 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } ) ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 11 | 6 | eleq2d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝑦  ∈  𝑋  ↔  𝑦  ∈  ∪  𝐽 ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  ∪  𝐽 ) | 
						
							| 13 | 12 | snssd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  { 𝑦 }  ⊆  ∪  𝐽 ) | 
						
							| 14 | 2 | iscld2 | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑦 }  ⊆  ∪  𝐽 )  →  ( { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ∪  𝐽  ∖  { 𝑦 } )  ∈  𝐽 ) ) | 
						
							| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ∪  𝐽  ∖  { 𝑦 } )  ∈  𝐽 ) ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥  ∈  ∪  𝐽 ) ) | 
						
							| 18 | 17 | imbi1d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  →  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) )  ↔  ( 𝑥  ∈  ∪  𝐽  →  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) ) ) | 
						
							| 19 |  | con1b | ⊢ ( ( ¬  𝑥  =  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) )  ↔  ( ¬  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 20 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 21 | 20 | imbi1i | ⊢ ( ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) )  ↔  ( ¬  𝑥  =  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 22 |  | disjsn | ⊢ ( ( 𝑜  ∩  { 𝑦 } )  =  ∅  ↔  ¬  𝑦  ∈  𝑜 ) | 
						
							| 23 |  | elssuni | ⊢ ( 𝑜  ∈  𝐽  →  𝑜  ⊆  ∪  𝐽 ) | 
						
							| 24 |  | reldisj | ⊢ ( 𝑜  ⊆  ∪  𝐽  →  ( ( 𝑜  ∩  { 𝑦 } )  =  ∅  ↔  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝑜  ∈  𝐽  →  ( ( 𝑜  ∩  { 𝑦 } )  =  ∅  ↔  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) | 
						
							| 26 | 22 25 | bitr3id | ⊢ ( 𝑜  ∈  𝐽  →  ( ¬  𝑦  ∈  𝑜  ↔  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( 𝑜  ∈  𝐽  →  ( ( 𝑥  ∈  𝑜  ∧  ¬  𝑦  ∈  𝑜 )  ↔  ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 28 | 27 | rexbiia | ⊢ ( ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  ¬  𝑦  ∈  𝑜 )  ↔  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) | 
						
							| 29 |  | rexanali | ⊢ ( ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  ¬  𝑦  ∈  𝑜 )  ↔  ¬  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 ) ) | 
						
							| 30 | 28 29 | bitr3i | ⊢ ( ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) )  ↔  ¬  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 ) ) | 
						
							| 31 | 30 | con2bii | ⊢ ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  ↔  ¬  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) | 
						
							| 32 | 31 | imbi1i | ⊢ ( ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ( ¬  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 33 | 19 21 32 | 3bitr4ri | ⊢ ( ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 34 | 33 | imbi2i | ⊢ ( ( 𝑥  ∈  𝑋  →  ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝑥  ∈  𝑋  →  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) ) | 
						
							| 35 |  | eldifsn | ⊢ ( 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } )  ↔  ( 𝑥  ∈  ∪  𝐽  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 36 | 35 | imbi1i | ⊢ ( ( 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } )  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) )  ↔  ( ( 𝑥  ∈  ∪  𝐽  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 37 |  | impexp | ⊢ ( ( ( 𝑥  ∈  ∪  𝐽  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) )  ↔  ( 𝑥  ∈  ∪  𝐽  →  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) ) | 
						
							| 38 | 36 37 | bitri | ⊢ ( ( 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } )  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) )  ↔  ( 𝑥  ∈  ∪  𝐽  →  ( 𝑥  ≠  𝑦  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) ) | 
						
							| 39 | 18 34 38 | 3bitr4g | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  →  ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } )  →  ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) ) | 
						
							| 40 | 39 | ralbidv2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  ( ∪  𝐽  ∖  { 𝑦 } ) ∃ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ∧  𝑜  ⊆  ( ∪  𝐽  ∖  { 𝑦 } ) ) ) ) | 
						
							| 41 | 10 15 40 | 3bitr4d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑥  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 42 | 41 | ralbidva | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 43 |  | ralcom | ⊢ ( ∀ 𝑦  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 44 | 42 43 | bitrdi | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 { 𝑦 }  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 45 | 5 7 44 | 3bitr2d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) |