Metamath Proof Explorer


Theorem ist1-5

Description: A topological space is T_1 iff it is both T_0 and R_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion ist1-5 ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) )

Proof

Step Hyp Ref Expression
1 t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )
2 t1hmph ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) )
3 t1hmph ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Fre → 𝐽 ∈ Fre ) )
4 1 2 3 ist1-5lem ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) )