Metamath Proof Explorer


Theorem ist1-5lem

Description: Lemma for ist1-5 and similar theorems. If A is a topological property which implies T_0, such as T_1 or T_2, the property can be "decomposed" into T_0 and a non-T_0 version of property A (which is defined as stating that the Kolmogorov quotient of the space has property A ). For example, if A is T_1, then the theorem states that a space is T_1 iff it is T_0 and its Kolmogorov quotient is T_1 (we call this property R_0). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses ist1-5lem.1 ( 𝐽𝐴𝐽 ∈ Kol2 )
ist1-5lem.2 ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽𝐴 → ( KQ ‘ 𝐽 ) ∈ 𝐴 ) )
ist1-5lem.3 ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ 𝐴𝐽𝐴 ) )
Assertion ist1-5lem ( 𝐽𝐴 ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ist1-5lem.1 ( 𝐽𝐴𝐽 ∈ Kol2 )
2 ist1-5lem.2 ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽𝐴 → ( KQ ‘ 𝐽 ) ∈ 𝐴 ) )
3 ist1-5lem.3 ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ 𝐴𝐽𝐴 ) )
4 kqhmph ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) )
5 1 4 sylib ( 𝐽𝐴𝐽 ≃ ( KQ ‘ 𝐽 ) )
6 5 2 mpcom ( 𝐽𝐴 → ( KQ ‘ 𝐽 ) ∈ 𝐴 )
7 1 6 jca ( 𝐽𝐴 → ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ 𝐴 ) )
8 hmphsym ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ≃ 𝐽 )
9 4 8 sylbi ( 𝐽 ∈ Kol2 → ( KQ ‘ 𝐽 ) ≃ 𝐽 )
10 9 3 syl ( 𝐽 ∈ Kol2 → ( ( KQ ‘ 𝐽 ) ∈ 𝐴𝐽𝐴 ) )
11 10 imp ( ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ 𝐴 ) → 𝐽𝐴 )
12 7 11 impbii ( 𝐽𝐴 ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ 𝐴 ) )