| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istrg.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
istdrg.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
elin |
⊢ ( 𝑅 ∈ ( TopRing ∩ DivRing ) ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ) |
| 4 |
3
|
anbi1i |
⊢ ( ( 𝑅 ∈ ( TopRing ∩ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝑀 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 9 |
6 8
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) = ( 𝑀 ↾s 𝑈 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ∈ TopGrp ↔ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 11 |
|
df-tdrg |
⊢ TopDRing = { 𝑟 ∈ ( TopRing ∩ DivRing ) ∣ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ∈ TopGrp } |
| 12 |
10 11
|
elrab2 |
⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ ( TopRing ∩ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 13 |
|
df-3an |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 14 |
4 12 13
|
3bitr4i |
⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |