Step |
Hyp |
Ref |
Expression |
1 |
|
istdrg2.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
istdrg2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
istdrg2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
5 |
1 4
|
istdrg |
⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ) |
6 |
2 4 3
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ) |
7 |
6
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) = ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ) |
10 |
9
|
eleq1d |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ↔ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ) |
12 |
|
df-3an |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ) |
13 |
|
df-3an |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ) |
15 |
5 14
|
bitri |
⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ) |