Step |
Hyp |
Ref |
Expression |
1 |
|
istgp.1 |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
2 |
|
istgp.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
|
elin |
⊢ ( 𝐺 ∈ ( Grp ∩ TopMnd ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝐺 ∈ ( Grp ∩ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
5 |
|
fvexd |
⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) ∈ V ) |
6 |
|
simpl |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑓 = 𝐺 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( invg ‘ 𝑓 ) = ( invg ‘ 𝐺 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( invg ‘ 𝑓 ) = 𝐼 ) |
9 |
|
id |
⊢ ( 𝑗 = ( TopOpen ‘ 𝑓 ) → 𝑗 = ( TopOpen ‘ 𝑓 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = ( TopOpen ‘ 𝐺 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = 𝐽 ) |
12 |
9 11
|
sylan9eqr |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑗 = 𝐽 ) |
13 |
12 12
|
oveq12d |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( 𝑗 Cn 𝑗 ) = ( 𝐽 Cn 𝐽 ) ) |
14 |
8 13
|
eleq12d |
⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) ↔ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
15 |
5 14
|
sbcied |
⊢ ( 𝑓 = 𝐺 → ( [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) ↔ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
16 |
|
df-tgp |
⊢ TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) } |
17 |
15 16
|
elrab2 |
⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ ( Grp ∩ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
18 |
|
df-3an |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
19 |
4 17 18
|
3bitr4i |
⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |