| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isthinc.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | isthinc.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | fvexd | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  ∈  V ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 6 |  | fvexd | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( Hom  ‘ 𝑐 )  ∈  V ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 8 | 7 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 10 |  | raleq | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ) ) | 
						
							| 11 | 10 | raleqbi1dv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ) ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ) ) | 
						
							| 13 |  | oveq | ⊢ ( ℎ  =  𝐻  →  ( 𝑥 ℎ 𝑦 )  =  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( ℎ  =  𝐻  →  ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 15 | 14 | mobidv | ⊢ ( ℎ  =  𝐻  →  ( ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 16 | 15 | 2ralbidv | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 18 | 12 17 | bitrd | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 19 | 6 9 18 | sbcied2 | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 20 | 3 5 19 | sbcied2 | ⊢ ( 𝑐  =  𝐶  →  ( [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 21 |  | df-thinc | ⊢ ThinCat  =  { 𝑐  ∈  Cat  ∣  [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) } | 
						
							| 22 | 20 21 | elrab2 | ⊢ ( 𝐶  ∈  ThinCat  ↔  ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) |