Step |
Hyp |
Ref |
Expression |
1 |
|
isthinc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isthinc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fvexd |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
6 |
|
fvexd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
10 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ) ) |
11 |
10
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ) ) |
13 |
|
oveq |
⊢ ( ℎ = 𝐻 → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
14 |
13
|
eleq2d |
⊢ ( ℎ = 𝐻 → ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
15 |
14
|
mobidv |
⊢ ( ℎ = 𝐻 → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
18 |
12 17
|
bitrd |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
19 |
6 9 18
|
sbcied2 |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
20 |
3 5 19
|
sbcied2 |
⊢ ( 𝑐 = 𝐶 → ( [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
21 |
|
df-thinc |
⊢ ThinCat = { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) } |
22 |
20 21
|
elrab2 |
⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |