Metamath Proof Explorer


Theorem isthinc3

Description: A thin category is a category in which, given a pair of objects x and y and any two morphisms f , g from x to y , the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthinc.b 𝐵 = ( Base ‘ 𝐶 )
isthinc.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion isthinc3 ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) )

Proof

Step Hyp Ref Expression
1 isthinc.b 𝐵 = ( Base ‘ 𝐶 )
2 isthinc.h 𝐻 = ( Hom ‘ 𝐶 )
3 1 2 isthinc ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) )
4 moel ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 )
5 4 2ralbii ( ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 )
6 5 anbi2i ( ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) )
7 3 6 bitri ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) )