| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isthinc.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | isthinc.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 | 1 2 | isthinc | ⊢ ( 𝐶  ∈  ThinCat  ↔  ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 4 |  | moel | ⊢ ( ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑥 𝐻 𝑦 ) 𝑓  =  𝑔 ) | 
						
							| 5 | 4 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑥 𝐻 𝑦 ) 𝑓  =  𝑔 ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  ↔  ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑥 𝐻 𝑦 ) 𝑓  =  𝑔 ) ) | 
						
							| 7 | 3 6 | bitri | ⊢ ( 𝐶  ∈  ThinCat  ↔  ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑔  ∈  ( 𝑥 𝐻 𝑦 ) 𝑓  =  𝑔 ) ) |