| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isthincd2lem1.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 2 |  | isthincd2lem1.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 3 |  | isthincd2lem1.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 4 |  | isthincd2lem1.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 5 |  | isthincd2lem1.5 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑧 𝐻 𝑦 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑓  ∈  ( 𝑧 𝐻 𝑦 ) ) ) | 
						
							| 8 | 7 | mobidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑦 ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧 𝐻 𝑦 )  =  ( 𝑧 𝐻 𝑤 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑦  =  𝑤  →  ( 𝑓  ∈  ( 𝑧 𝐻 𝑦 )  ↔  𝑓  ∈  ( 𝑧 𝐻 𝑤 ) ) ) | 
						
							| 11 | 10 | mobidv | ⊢ ( 𝑦  =  𝑤  →  ( ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑦 )  ↔  ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑤 ) ) ) | 
						
							| 12 | 8 11 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑤 ) ) | 
						
							| 13 | 5 12 | sylib | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑤 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑧 𝐻 𝑤 )  =  ( 𝑋 𝐻 𝑤 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝑧  =  𝑋  →  ( 𝑓  ∈  ( 𝑧 𝐻 𝑤 )  ↔  𝑓  ∈  ( 𝑋 𝐻 𝑤 ) ) ) | 
						
							| 16 | 15 | mobidv | ⊢ ( 𝑧  =  𝑋  →  ( ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑤 )  ↔  ∃* 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑤 ) ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑘 𝑓  ∈  ( 𝑋 𝐻 𝑤 ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑓 𝑘  ∈  ( 𝑋 𝐻 𝑤 ) | 
						
							| 19 |  | eleq1w | ⊢ ( 𝑓  =  𝑘  →  ( 𝑓  ∈  ( 𝑋 𝐻 𝑤 )  ↔  𝑘  ∈  ( 𝑋 𝐻 𝑤 ) ) ) | 
						
							| 20 | 17 18 19 | cbvmow | ⊢ ( ∃* 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑤 )  ↔  ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑤 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑤  =  𝑌  →  ( 𝑋 𝐻 𝑤 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 22 | 21 | eleq2d | ⊢ ( 𝑤  =  𝑌  →  ( 𝑘  ∈  ( 𝑋 𝐻 𝑤 )  ↔  𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 23 | 22 | mobidv | ⊢ ( 𝑤  =  𝑌  →  ( ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑤 )  ↔  ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 24 | 20 23 | bitrid | ⊢ ( 𝑤  =  𝑌  →  ( ∃* 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑤 )  ↔  ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 25 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  𝐵  =  𝐵 ) | 
						
							| 26 | 16 24 1 25 2 | rspc2vd | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑧 𝐻 𝑤 )  →  ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 27 | 13 26 | mpd | ⊢ ( 𝜑  →  ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 28 |  | moel | ⊢ ( ∃* 𝑘 𝑘  ∈  ( 𝑋 𝐻 𝑌 )  ↔  ∀ 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ∀ 𝑙  ∈  ( 𝑋 𝐻 𝑌 ) 𝑘  =  𝑙 ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ∀ 𝑙  ∈  ( 𝑋 𝐻 𝑌 ) 𝑘  =  𝑙 ) | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑘  =  𝐹  →  ( 𝑘  =  𝑙  ↔  𝐹  =  𝑙 ) ) | 
						
							| 31 |  | eqeq2 | ⊢ ( 𝑙  =  𝐺  →  ( 𝐹  =  𝑙  ↔  𝐹  =  𝐺 ) ) | 
						
							| 32 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐹 )  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 33 | 30 31 3 32 4 | rspc2vd | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ( 𝑋 𝐻 𝑌 ) ∀ 𝑙  ∈  ( 𝑋 𝐻 𝑌 ) 𝑘  =  𝑙  →  𝐹  =  𝐺 ) ) | 
						
							| 34 | 29 33 | mpd | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |