Step |
Hyp |
Ref |
Expression |
1 |
|
isthincd2lem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
2 |
|
isthincd2lem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
3 |
|
isthincd2lem1.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
4 |
|
isthincd2lem1.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) |
5 |
|
isthincd2lem1.5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) ) |
8 |
7
|
mobidv |
⊢ ( 𝑥 = 𝑧 → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) ) |
11 |
10
|
mobidv |
⊢ ( 𝑦 = 𝑤 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) ) |
12 |
8 11
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) |
13 |
5 12
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑤 ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝑧 = 𝑋 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) ) |
16 |
15
|
mobidv |
⊢ ( 𝑧 = 𝑋 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑘 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑓 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) |
19 |
|
eleq1w |
⊢ ( 𝑓 = 𝑘 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ) ) |
20 |
17 18 19
|
cbvmow |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ) |
21 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( 𝑋 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) ) |
22 |
21
|
eleq2d |
⊢ ( 𝑤 = 𝑌 → ( 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
23 |
22
|
mobidv |
⊢ ( 𝑤 = 𝑌 → ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
24 |
20 23
|
syl5bb |
⊢ ( 𝑤 = 𝑌 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑋 ) → 𝐵 = 𝐵 ) |
26 |
16 24 1 25 2
|
rspc2vd |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
27 |
13 26
|
mpd |
⊢ ( 𝜑 → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) |
28 |
|
moel |
⊢ ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 ) |
29 |
27 28
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 ) |
30 |
|
eqeq1 |
⊢ ( 𝑘 = 𝐹 → ( 𝑘 = 𝑙 ↔ 𝐹 = 𝑙 ) ) |
31 |
|
eqeq2 |
⊢ ( 𝑙 = 𝐺 → ( 𝐹 = 𝑙 ↔ 𝐹 = 𝐺 ) ) |
32 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐹 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
33 |
30 31 3 32 4
|
rspc2vd |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 → 𝐹 = 𝐺 ) ) |
34 |
29 33
|
mpd |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |