Step |
Hyp |
Ref |
Expression |
1 |
|
isthincd2lem2.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
2 |
|
isthincd2lem2.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
3 |
|
isthincd2lem2.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
4 |
|
isthincd2lem2.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
5 |
|
isthincd2lem2.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
6 |
|
isthincd2lem2.6 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐻 𝑦 ) = ( 𝑤 𝐻 𝑦 ) ) |
8 |
|
opeq1 |
⊢ ( 𝑥 = 𝑤 → 〈 𝑥 , 𝑦 〉 = 〈 𝑤 , 𝑦 〉 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = 𝑤 → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) ) |
10 |
9
|
oveqd |
⊢ ( 𝑥 = 𝑤 → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐻 𝑧 ) = ( 𝑤 𝐻 𝑧 ) ) |
12 |
10 11
|
eleq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
14 |
7 13
|
raleqbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑤 𝐻 𝑦 ) = ( 𝑤 𝐻 𝑣 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 𝐻 𝑧 ) = ( 𝑣 𝐻 𝑧 ) ) |
17 |
|
opeq2 |
⊢ ( 𝑦 = 𝑣 → 〈 𝑤 , 𝑦 〉 = 〈 𝑤 , 𝑣 〉 ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝑣 → ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) ) |
19 |
18
|
oveqd |
⊢ ( 𝑦 = 𝑣 → ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
21 |
16 20
|
raleqbidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
22 |
15 21
|
raleqbidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑣 𝐻 𝑧 ) = ( 𝑣 𝐻 𝑢 ) ) |
24 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) ) |
25 |
24
|
oveqd |
⊢ ( 𝑧 = 𝑢 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑤 𝐻 𝑧 ) = ( 𝑤 𝐻 𝑢 ) ) |
27 |
25 26
|
eleq12d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
28 |
23 27
|
raleqbidv |
⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
29 |
28
|
ralbidv |
⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑓 = 𝑘 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑓 = 𝑘 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
32 |
|
oveq1 |
⊢ ( 𝑔 = 𝑙 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) |
33 |
32
|
eleq1d |
⊢ ( 𝑔 = 𝑙 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
34 |
31 33
|
cbvral2vw |
⊢ ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
35 |
29 34
|
bitrdi |
⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
36 |
14 22 35
|
cbvral3vw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
37 |
6 36
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
38 |
|
oveq1 |
⊢ ( 𝑤 = 𝑋 → ( 𝑤 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑣 ) ) |
39 |
|
opeq1 |
⊢ ( 𝑤 = 𝑋 → 〈 𝑤 , 𝑣 〉 = 〈 𝑋 , 𝑣 〉 ) |
40 |
39
|
oveq1d |
⊢ ( 𝑤 = 𝑋 → ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) ) |
41 |
40
|
oveqd |
⊢ ( 𝑤 = 𝑋 → ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑤 = 𝑋 → ( 𝑤 𝐻 𝑢 ) = ( 𝑋 𝐻 𝑢 ) ) |
43 |
41 42
|
eleq12d |
⊢ ( 𝑤 = 𝑋 → ( ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
45 |
38 44
|
raleqbidv |
⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
46 |
|
oveq2 |
⊢ ( 𝑣 = 𝑌 → ( 𝑋 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑌 ) ) |
47 |
|
oveq1 |
⊢ ( 𝑣 = 𝑌 → ( 𝑣 𝐻 𝑢 ) = ( 𝑌 𝐻 𝑢 ) ) |
48 |
|
opeq2 |
⊢ ( 𝑣 = 𝑌 → 〈 𝑋 , 𝑣 〉 = 〈 𝑋 , 𝑌 〉 ) |
49 |
48
|
oveq1d |
⊢ ( 𝑣 = 𝑌 → ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) ) |
50 |
49
|
oveqd |
⊢ ( 𝑣 = 𝑌 → ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ) |
51 |
50
|
eleq1d |
⊢ ( 𝑣 = 𝑌 → ( ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
52 |
47 51
|
raleqbidv |
⊢ ( 𝑣 = 𝑌 → ( ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
53 |
46 52
|
raleqbidv |
⊢ ( 𝑣 = 𝑌 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑢 = 𝑍 → ( 𝑌 𝐻 𝑢 ) = ( 𝑌 𝐻 𝑍 ) ) |
55 |
|
oveq2 |
⊢ ( 𝑢 = 𝑍 → ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
56 |
55
|
oveqd |
⊢ ( 𝑢 = 𝑍 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ) |
57 |
|
oveq2 |
⊢ ( 𝑢 = 𝑍 → ( 𝑋 𝐻 𝑢 ) = ( 𝑋 𝐻 𝑍 ) ) |
58 |
56 57
|
eleq12d |
⊢ ( 𝑢 = 𝑍 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
59 |
54 58
|
raleqbidv |
⊢ ( 𝑢 = 𝑍 → ( ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
60 |
59
|
ralbidv |
⊢ ( 𝑢 = 𝑍 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
61 |
45 53 60
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
62 |
1 2 3 61
|
syl3anc |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
63 |
37 62
|
mpd |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
64 |
|
oveq2 |
⊢ ( 𝑘 = 𝐹 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
65 |
64
|
eleq1d |
⊢ ( 𝑘 = 𝐹 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
66 |
|
oveq1 |
⊢ ( 𝑙 = 𝐺 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
67 |
66
|
eleq1d |
⊢ ( 𝑙 = 𝐺 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
68 |
65 67
|
rspc2v |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
69 |
4 5 68
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
70 |
63 69
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |