Step |
Hyp |
Ref |
Expression |
1 |
|
istlm.s |
⊢ · = ( ·sf ‘ 𝑊 ) |
2 |
|
istlm.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
istlm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
istlm.k |
⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) |
5 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) |
6 |
|
df-3an |
⊢ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ TopRing ) ) |
7 |
|
elin |
⊢ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ↔ ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ TopRing ) ) |
9 |
6 8
|
bitr4i |
⊢ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ) |
10 |
9
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑤 = 𝑊 → ( ( Scalar ‘ 𝑤 ) ∈ TopRing ↔ 𝐹 ∈ TopRing ) ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·sf ‘ 𝑤 ) = ( ·sf ‘ 𝑊 ) ) |
15 |
14 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·sf ‘ 𝑤 ) = · ) |
16 |
12
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) = ( TopOpen ‘ 𝐹 ) ) |
17 |
16 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝑊 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = 𝐽 ) |
20 |
17 19
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) = ( 𝐾 ×t 𝐽 ) ) |
21 |
20 19
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) = ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
22 |
15 21
|
eleq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ↔ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |
23 |
13 22
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) ↔ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) |
24 |
|
df-tlm |
⊢ TopMod = { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |
25 |
23 24
|
elrab2 |
⊢ ( 𝑊 ∈ TopMod ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) |
26 |
5 10 25
|
3bitr4ri |
⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |