| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							istlm.s | 
							⊢  ·   =  (  ·sf  ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							istlm.j | 
							⊢ 𝐽  =  ( TopOpen ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							istlm.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							istlm.k | 
							⊢ 𝐾  =  ( TopOpen ‘ 𝐹 )  | 
						
						
							| 5 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  𝐹  ∈  TopRing )  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) )  ↔  ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  ( 𝐹  ∈  TopRing  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  TopRing )  ↔  ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod )  ∧  𝐹  ∈  TopRing ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ↔  ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi1i | 
							⊢ ( ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  𝐹  ∈  TopRing )  ↔  ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod )  ∧  𝐹  ∈  TopRing ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitr4i | 
							⊢ ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  TopRing )  ↔  ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  𝐹  ∈  TopRing ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi1i | 
							⊢ ( ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  TopRing )  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) )  ↔  ( ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  𝐹  ∈  TopRing )  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  ( Scalar ‘ 𝑊 ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  𝐹 )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( Scalar ‘ 𝑤 )  ∈  TopRing  ↔  𝐹  ∈  TopRing ) )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  (  ·sf  ‘ 𝑤 )  =  (  ·sf  ‘ 𝑊 ) )  | 
						
						
							| 15 | 
							
								14 1
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  (  ·sf  ‘ 𝑤 )  =   ·  )  | 
						
						
							| 16 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( 𝑤  =  𝑊  →  ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  =  ( TopOpen ‘ 𝐹 ) )  | 
						
						
							| 17 | 
							
								16 4
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  =  𝐾 )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  ( TopOpen ‘ 𝑤 )  =  ( TopOpen ‘ 𝑊 ) )  | 
						
						
							| 19 | 
							
								18 2
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  ( TopOpen ‘ 𝑤 )  =  𝐽 )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							oveq12d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  ×t  ( TopOpen ‘ 𝑤 ) )  =  ( 𝐾  ×t  𝐽 ) )  | 
						
						
							| 21 | 
							
								20 19
							 | 
							oveq12d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  ×t  ( TopOpen ‘ 𝑤 ) )  Cn  ( TopOpen ‘ 𝑤 ) )  =  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) )  | 
						
						
							| 22 | 
							
								15 21
							 | 
							eleq12d | 
							⊢ ( 𝑤  =  𝑊  →  ( (  ·sf  ‘ 𝑤 )  ∈  ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  ×t  ( TopOpen ‘ 𝑤 ) )  Cn  ( TopOpen ‘ 𝑤 ) )  ↔   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) )  | 
						
						
							| 23 | 
							
								13 22
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( ( Scalar ‘ 𝑤 )  ∈  TopRing  ∧  (  ·sf  ‘ 𝑤 )  ∈  ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  ×t  ( TopOpen ‘ 𝑤 ) )  Cn  ( TopOpen ‘ 𝑤 ) ) )  ↔  ( 𝐹  ∈  TopRing  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							df-tlm | 
							⊢ TopMod  =  { 𝑤  ∈  ( TopMnd  ∩  LMod )  ∣  ( ( Scalar ‘ 𝑤 )  ∈  TopRing  ∧  (  ·sf  ‘ 𝑤 )  ∈  ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) )  ×t  ( TopOpen ‘ 𝑤 ) )  Cn  ( TopOpen ‘ 𝑤 ) ) ) }  | 
						
						
							| 25 | 
							
								23 24
							 | 
							elrab2 | 
							⊢ ( 𝑊  ∈  TopMod  ↔  ( 𝑊  ∈  ( TopMnd  ∩  LMod )  ∧  ( 𝐹  ∈  TopRing  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) ) )  | 
						
						
							| 26 | 
							
								5 10 25
							 | 
							3bitr4ri | 
							⊢ ( 𝑊  ∈  TopMod  ↔  ( ( 𝑊  ∈  TopMnd  ∧  𝑊  ∈  LMod  ∧  𝐹  ∈  TopRing )  ∧   ·   ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) )  |