Metamath Proof Explorer


Theorem istopg

Description: Express the predicate " J is a topology". See istop2g for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion istopg ( 𝐽𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 pweq ( 𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽 )
2 eleq2 ( 𝑧 = 𝐽 → ( 𝑥𝑧 𝑥𝐽 ) )
3 1 2 raleqbidv ( 𝑧 = 𝐽 → ( ∀ 𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ↔ ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ) )
4 eleq2 ( 𝑧 = 𝐽 → ( ( 𝑥𝑦 ) ∈ 𝑧 ↔ ( 𝑥𝑦 ) ∈ 𝐽 ) )
5 4 raleqbi1dv ( 𝑧 = 𝐽 → ( ∀ 𝑦𝑧 ( 𝑥𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) )
6 5 raleqbi1dv ( 𝑧 = 𝐽 → ( ∀ 𝑥𝑧𝑦𝑧 ( 𝑥𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) )
7 3 6 anbi12d ( 𝑧 = 𝐽 → ( ( ∀ 𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀ 𝑥𝑧𝑦𝑧 ( 𝑥𝑦 ) ∈ 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )
8 df-top Top = { 𝑧 ∣ ( ∀ 𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀ 𝑥𝑧𝑦𝑧 ( 𝑥𝑦 ) ∈ 𝑧 ) }
9 7 8 elab2g ( 𝐽𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )
10 df-ral ( ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ) )
11 elpw2g ( 𝐽𝐴 → ( 𝑥 ∈ 𝒫 𝐽𝑥𝐽 ) )
12 11 imbi1d ( 𝐽𝐴 → ( ( 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ) ↔ ( 𝑥𝐽 𝑥𝐽 ) ) )
13 12 albidv ( 𝐽𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ) ↔ ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ) )
14 10 13 syl5bb ( 𝐽𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ) )
15 14 anbi1d ( 𝐽𝐴 → ( ( ∀ 𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )
16 9 15 bitrd ( 𝐽𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )