Description: Express the predicate " J is a topology". See istop2g for another characterization using nonempty finite intersections instead of binary intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006) (Revised by Mario Carneiro, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | istopg | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq | ⊢ ( 𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽 ) | |
2 | eleq2 | ⊢ ( 𝑧 = 𝐽 → ( ∪ 𝑥 ∈ 𝑧 ↔ ∪ 𝑥 ∈ 𝐽 ) ) | |
3 | 1 2 | raleqbidv | ⊢ ( 𝑧 = 𝐽 → ( ∀ 𝑥 ∈ 𝒫 𝑧 ∪ 𝑥 ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ) ) |
4 | eleq2 | ⊢ ( 𝑧 = 𝐽 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) | |
5 | 4 | raleqbi1dv | ⊢ ( 𝑧 = 𝐽 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
6 | 5 | raleqbi1dv | ⊢ ( 𝑧 = 𝐽 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
7 | 3 6 | anbi12d | ⊢ ( 𝑧 = 𝐽 → ( ( ∀ 𝑥 ∈ 𝒫 𝑧 ∪ 𝑥 ∈ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
8 | df-top | ⊢ Top = { 𝑧 ∣ ( ∀ 𝑥 ∈ 𝒫 𝑧 ∪ 𝑥 ∈ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } | |
9 | 7 8 | elab2g | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
10 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) | |
11 | elpw2g | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝑥 ∈ 𝒫 𝐽 ↔ 𝑥 ⊆ 𝐽 ) ) | |
12 | 11 | imbi1d | ⊢ ( 𝐽 ∈ 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ↔ ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) ) |
13 | 12 | albidv | ⊢ ( 𝐽 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) ) |
14 | 10 13 | syl5bb | ⊢ ( 𝐽 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) ) |
15 | 14 | anbi1d | ⊢ ( 𝐽 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ 𝒫 𝐽 ∪ 𝑥 ∈ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
16 | 9 15 | bitrd | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |