Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ V ) |
2 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
3 |
|
eleq1 |
⊢ ( 𝐵 = ∪ 𝐽 → ( 𝐵 ∈ V ↔ ∪ 𝐽 ∈ V ) ) |
4 |
2 3
|
syl5ibrcom |
⊢ ( 𝐽 ∈ Top → ( 𝐵 = ∪ 𝐽 → 𝐵 ∈ V ) ) |
5 |
4
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) → 𝐵 ∈ V ) |
6 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑏 = 𝐵 → { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } = { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) |
8 |
|
df-topon |
⊢ TopOn = ( 𝑏 ∈ V ↦ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ) |
9 |
|
vpwex |
⊢ 𝒫 𝑏 ∈ V |
10 |
9
|
pwex |
⊢ 𝒫 𝒫 𝑏 ∈ V |
11 |
|
rabss |
⊢ ( { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ⊆ 𝒫 𝒫 𝑏 ↔ ∀ 𝑗 ∈ Top ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) ) |
12 |
|
pwuni |
⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 |
13 |
|
pweq |
⊢ ( 𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗 ) |
14 |
12 13
|
sseqtrrid |
⊢ ( 𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏 ) |
15 |
|
velpw |
⊢ ( 𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) |
17 |
16
|
a1i |
⊢ ( 𝑗 ∈ Top → ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) ) |
18 |
11 17
|
mprgbir |
⊢ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ⊆ 𝒫 𝒫 𝑏 |
19 |
10 18
|
ssexi |
⊢ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ∈ V |
20 |
7 8 19
|
fvmpt3i |
⊢ ( 𝐵 ∈ V → ( TopOn ‘ 𝐵 ) = { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) |
21 |
20
|
eleq2d |
⊢ ( 𝐵 ∈ V → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ 𝐽 ∈ { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) ) |
22 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽 ) ) |
24 |
23
|
elrab |
⊢ ( 𝐽 ∈ { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) |
25 |
21 24
|
bitrdi |
⊢ ( 𝐵 ∈ V → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) ) |
26 |
1 5 25
|
pm5.21nii |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) |