Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
elfvex |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑋 ∈ V ) |
3 |
2
|
adantr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑋 ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( Met ‘ 𝑦 ) = ( Met ‘ 𝑋 ) ) |
5 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑋 → ( ∪ 𝑣 = 𝑦 ↔ ∪ 𝑣 = 𝑋 ) ) |
6 |
|
rexeq |
⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
11 |
4 10
|
rabeqbidv |
⊢ ( 𝑦 = 𝑋 → { 𝑚 ∈ ( Met ‘ 𝑦 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } = { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
12 |
|
df-totbnd |
⊢ TotBnd = ( 𝑦 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑦 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
13 |
|
fvex |
⊢ ( Met ‘ 𝑋 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ∈ V |
15 |
11 12 14
|
fvmpt |
⊢ ( 𝑋 ∈ V → ( TotBnd ‘ 𝑋 ) = { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
16 |
15
|
eleq2d |
⊢ ( 𝑋 ∈ V → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) ) |
17 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ball ‘ 𝑚 ) = ( ball ‘ 𝑀 ) ) |
18 |
17
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
25 |
24
|
elrab |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
26 |
16 25
|
bitrdi |
⊢ ( 𝑋 ∈ V → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ) |
27 |
1 3 26
|
pm5.21nii |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |