Metamath Proof Explorer


Theorem istotbnd2

Description: The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion istotbnd2 ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )

Proof

Step Hyp Ref Expression
1 istotbnd ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
2 1 baib ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )