Step |
Hyp |
Ref |
Expression |
1 |
|
istotbnd |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
3 |
2
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
4 |
3
|
ac6sfi |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
5 |
4
|
ex |
⊢ ( 𝑤 ∈ Fin → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
7 |
|
simprrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 : 𝑤 ⟶ 𝑋 ) |
8 |
7
|
frnd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ⊆ 𝑋 ) |
9 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑤 ∈ Fin ) |
10 |
7
|
ffnd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 Fn 𝑤 ) |
11 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑤 ↔ 𝑓 : 𝑤 –onto→ ran 𝑓 ) |
12 |
10 11
|
sylib |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 : 𝑤 –onto→ ran 𝑓 ) |
13 |
|
fofi |
⊢ ( ( 𝑤 ∈ Fin ∧ 𝑓 : 𝑤 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
14 |
9 12 13
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ∈ Fin ) |
15 |
|
elfpw |
⊢ ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin ) ) |
16 |
8 14 15
|
sylanbrc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
17 |
2
|
eleq2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
18 |
17
|
rexrn |
⊢ ( 𝑓 Fn 𝑤 → ( ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
19 |
10 18
|
syl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ( ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
20 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
21 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
22 |
19 20 21
|
3bitr4g |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ( 𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
23 |
22
|
eqrdv |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
24 |
|
simprrr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
25 |
|
iuneq2 |
⊢ ( ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
27 |
|
uniiun |
⊢ ∪ 𝑤 = ∪ 𝑏 ∈ 𝑤 𝑏 |
28 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑤 = 𝑋 ) |
29 |
27 28
|
eqtr3id |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑏 ∈ 𝑤 𝑏 = 𝑋 ) |
30 |
23 26 29
|
3eqtr2d |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
31 |
|
iuneq1 |
⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑣 = ran 𝑓 → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
33 |
32
|
rspcev |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
34 |
16 30 33
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
35 |
34
|
expr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
36 |
35
|
exlimdv |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
37 |
6 36
|
syld |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
38 |
37
|
expimpd |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) → ( ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
39 |
38
|
rexlimdva |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
40 |
|
elfpw |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin ) ) |
41 |
40
|
simprbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ∈ Fin ) |
42 |
41
|
ad2antrl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → 𝑣 ∈ Fin ) |
43 |
|
mptfi |
⊢ ( 𝑣 ∈ Fin → ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
44 |
|
rnfi |
⊢ ( ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
45 |
42 43 44
|
3syl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
46 |
|
ovex |
⊢ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∈ V |
47 |
46
|
dfiun3 |
⊢ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
48 |
|
simprr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
49 |
47 48
|
eqtr3id |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ) |
50 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
51 |
50
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = { 𝑏 ∣ ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } |
52 |
40
|
simplbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ⊆ 𝑋 ) |
53 |
52
|
ad2antrl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → 𝑣 ⊆ 𝑋 ) |
54 |
|
ssrexv |
⊢ ( 𝑣 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ( ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
56 |
55
|
ss2abdv |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → { 𝑏 ∣ ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
57 |
51 56
|
eqsstrid |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
58 |
|
unieq |
⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑤 = ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∪ 𝑤 = 𝑋 ↔ ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ) ) |
60 |
|
ssabral |
⊢ ( 𝑤 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
61 |
|
sseq1 |
⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑤 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
62 |
60 61
|
bitr3id |
⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
63 |
59 62
|
anbi12d |
⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ( ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ∧ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) ) |
64 |
63
|
rspcev |
⊢ ( ( ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ∧ ( ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ∧ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
65 |
45 49 57 64
|
syl12anc |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
66 |
65
|
expr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
67 |
66
|
rexlimdva |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
68 |
39 67
|
impbid |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
69 |
68
|
ralbidv |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
70 |
69
|
pm5.32i |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
71 |
1 70
|
bitri |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |