Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| istps.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | ||
| Assertion | istps2 | ⊢ ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| 2 | istps.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 3 | 1 2 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
| 4 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ↔ ( 𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽 ) ) |