Metamath Proof Explorer


Theorem istps2

Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istps.a 𝐴 = ( Base ‘ 𝐾 )
istps.j 𝐽 = ( TopOpen ‘ 𝐾 )
Assertion istps2 ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = 𝐽 ) )

Proof

Step Hyp Ref Expression
1 istps.a 𝐴 = ( Base ‘ 𝐾 )
2 istps.j 𝐽 = ( TopOpen ‘ 𝐾 )
3 1 2 istps ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) )
4 istopon ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ↔ ( 𝐽 ∈ Top ∧ 𝐴 = 𝐽 ) )
5 3 4 bitri ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = 𝐽 ) )