Metamath Proof Explorer
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012)
|
|
Ref |
Expression |
|
Hypotheses |
istpsi.b |
⊢ ( Base ‘ 𝐾 ) = 𝐴 |
|
|
istpsi.j |
⊢ ( TopOpen ‘ 𝐾 ) = 𝐽 |
|
|
istpsi.1 |
⊢ 𝐴 = ∪ 𝐽 |
|
|
istpsi.2 |
⊢ 𝐽 ∈ Top |
|
Assertion |
istpsi |
⊢ 𝐾 ∈ TopSp |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istpsi.b |
⊢ ( Base ‘ 𝐾 ) = 𝐴 |
| 2 |
|
istpsi.j |
⊢ ( TopOpen ‘ 𝐾 ) = 𝐽 |
| 3 |
|
istpsi.1 |
⊢ 𝐴 = ∪ 𝐽 |
| 4 |
|
istpsi.2 |
⊢ 𝐽 ∈ Top |
| 5 |
1
|
eqcomi |
⊢ 𝐴 = ( Base ‘ 𝐾 ) |
| 6 |
2
|
eqcomi |
⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) |
| 7 |
5 6
|
istps2 |
⊢ ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽 ) ) |
| 8 |
4 3 7
|
mpbir2an |
⊢ 𝐾 ∈ TopSp |