Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑝 = 𝑃 ) |
5 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
6 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑥 ) = ( 𝑥 𝐼 𝑥 ) ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) ↔ 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) ) ) |
8 |
7
|
imbi1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
9 |
4 8
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
10 |
4 9
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
11 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑧 ) = ( 𝑥 𝐼 𝑧 ) ) |
12 |
11
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ↔ 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |
13 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑦 𝑖 𝑧 ) = ( 𝑦 𝐼 𝑧 ) ) |
14 |
13
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ↔ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) ) |
15 |
12 14
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) ↔ ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) ) ) |
16 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑢 𝑖 𝑦 ) = ( 𝑢 𝐼 𝑦 ) ) |
17 |
16
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ↔ 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ) ) |
18 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑣 𝑖 𝑥 ) = ( 𝑣 𝐼 𝑥 ) ) |
19 |
18
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ↔ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) |
20 |
17 19
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ↔ ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) |
21 |
4 20
|
rexeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) |
22 |
15 21
|
imbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
23 |
4 22
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
24 |
4 23
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
25 |
4 24
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
26 |
4 25
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
27 |
4 26
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ) ) |
28 |
4
|
pweqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝒫 𝑝 = 𝒫 𝑃 ) |
29 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 𝑖 𝑦 ) = ( 𝑎 𝐼 𝑦 ) ) |
30 |
29
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ↔ 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ) ) |
31 |
30
|
2ralbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ) ) |
32 |
4 31
|
rexeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ↔ ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ) ) |
33 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑦 ) = ( 𝑥 𝐼 𝑦 ) ) |
34 |
33
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ↔ 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) |
35 |
34
|
2ralbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) |
36 |
4 35
|
rexeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ↔ ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) |
37 |
32 36
|
imbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ↔ ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) |
38 |
28 37
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) |
39 |
28 38
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) |
40 |
10 27 39
|
3anbi123d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |
41 |
1 3 40
|
sbcie2s |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |
42 |
|
df-trkgb |
⊢ TarskiGB = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) } |
43 |
41 42
|
elab4g |
⊢ ( 𝐺 ∈ TarskiGB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |