Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑝 = 𝑃 ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑃 = 𝑝 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
7 |
|
simpllr |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → 𝑖 = 𝐼 ) |
8 |
7
|
eqcomd |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → 𝐼 = 𝑖 ) |
9 |
8
|
oveqd |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( 𝑥 𝐼 𝑥 ) = ( 𝑥 𝑖 𝑥 ) ) |
10 |
9
|
eleq2d |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) ) ) |
11 |
10
|
imbi1d |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
12 |
6 11
|
raleqbidva |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) → ( ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
13 |
5 12
|
raleqbidva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
14 |
6
|
adantr |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
16 |
15
|
adantr |
⊢ ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
17 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → 𝑖 = 𝐼 ) |
18 |
17
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → 𝐼 = 𝑖 ) |
19 |
18
|
oveqd |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) ) |
20 |
19
|
eleq2d |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
21 |
18
|
oveqd |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( 𝑦 𝐼 𝑧 ) = ( 𝑦 𝑖 𝑧 ) ) |
22 |
21
|
eleq2d |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ↔ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) ↔ ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) ) ) |
24 |
16
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
25 |
18
|
oveqdr |
⊢ ( ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑢 𝐼 𝑦 ) = ( 𝑢 𝑖 𝑦 ) ) |
26 |
25
|
eleq2d |
⊢ ( ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ↔ 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ) ) |
27 |
18
|
oveqdr |
⊢ ( ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑣 𝐼 𝑥 ) = ( 𝑣 𝑖 𝑥 ) ) |
28 |
27
|
eleq2d |
⊢ ( ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ↔ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
29 |
26 28
|
anbi12d |
⊢ ( ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ↔ ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) |
30 |
24 29
|
rexeqbidva |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ↔ ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) |
31 |
23 30
|
imbi12d |
⊢ ( ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) → ( ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
32 |
16 31
|
raleqbidva |
⊢ ( ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) ∧ 𝑢 ∈ 𝑃 ) → ( ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
33 |
15 32
|
raleqbidva |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
34 |
14 33
|
raleqbidva |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
35 |
6 34
|
raleqbidva |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) → ( ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
36 |
5 35
|
raleqbidva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ) ) |
37 |
5
|
pweqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝒫 𝑃 = 𝒫 𝑝 ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) → 𝒫 𝑃 = 𝒫 𝑝 ) |
39 |
5
|
ad2antrr |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) → 𝑃 = 𝑝 ) |
40 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → 𝑖 = 𝐼 ) |
41 |
40
|
eqcomd |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → 𝐼 = 𝑖 ) |
42 |
41
|
oveqd |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑎 𝐼 𝑦 ) = ( 𝑎 𝑖 𝑦 ) ) |
43 |
42
|
eleq2d |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ↔ 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ) ) |
44 |
43
|
2ralbidv |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑎 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ) ) |
45 |
39 44
|
rexeqbidva |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) → ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) ↔ ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) ) ) |
46 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝑖 = 𝐼 ) |
47 |
46
|
eqcomd |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝐼 = 𝑖 ) |
48 |
47
|
oveqd |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 𝑖 𝑦 ) ) |
49 |
48
|
eleq2d |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
50 |
49
|
2ralbidv |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
51 |
39 50
|
rexeqbidva |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) → ( ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ↔ ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
52 |
45 51
|
imbi12d |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) ∧ 𝑡 ∈ 𝒫 𝑃 ) → ( ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ↔ ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ) |
53 |
38 52
|
raleqbidva |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑠 ∈ 𝒫 𝑃 ) → ( ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ) |
54 |
37 53
|
raleqbidva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ) |
55 |
13 36 54
|
3anbi123d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ) ) |
56 |
1 3 55
|
sbcie2s |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |
57 |
|
df-trkgb |
⊢ TarskiGB = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) } |
58 |
56 57
|
elab4g |
⊢ ( 𝐺 ∈ TarskiGB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |