Metamath Proof Explorer


Theorem istrkgc

Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p 𝑃 = ( Base ‘ 𝐺 )
istrkg.d = ( dist ‘ 𝐺 )
istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion istrkgc ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 istrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg.d = ( dist ‘ 𝐺 )
3 istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 simpl ( ( 𝑝 = 𝑃𝑑 = ) → 𝑝 = 𝑃 )
5 simpr ( ( 𝑝 = 𝑃𝑑 = ) → 𝑑 = )
6 5 oveqd ( ( 𝑝 = 𝑃𝑑 = ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝑦 ) )
7 5 oveqd ( ( 𝑝 = 𝑃𝑑 = ) → ( 𝑦 𝑑 𝑥 ) = ( 𝑦 𝑥 ) )
8 6 7 eqeq12d ( ( 𝑝 = 𝑃𝑑 = ) → ( ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ) )
9 4 8 raleqbidv ( ( 𝑝 = 𝑃𝑑 = ) → ( ∀ 𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ∀ 𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ) )
10 4 9 raleqbidv ( ( 𝑝 = 𝑃𝑑 = ) → ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ) )
11 5 oveqd ( ( 𝑝 = 𝑃𝑑 = ) → ( 𝑧 𝑑 𝑧 ) = ( 𝑧 𝑧 ) )
12 6 11 eqeq12d ( ( 𝑝 = 𝑃𝑑 = ) → ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) ↔ ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) ) )
13 12 imbi1d ( ( 𝑝 = 𝑃𝑑 = ) → ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) )
14 4 13 raleqbidv ( ( 𝑝 = 𝑃𝑑 = ) → ( ∀ 𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) )
15 4 14 raleqbidv ( ( 𝑝 = 𝑃𝑑 = ) → ( ∀ 𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) )
16 4 15 raleqbidv ( ( 𝑝 = 𝑃𝑑 = ) → ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) )
17 10 16 anbi12d ( ( 𝑝 = 𝑃𝑑 = ) → ( ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) ) )
18 1 2 17 sbcie2s ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) ) )
19 df-trkgc TarskiGC = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) }
20 18 19 elab4g ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) ) )