Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑝 = 𝑃 ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑃 = 𝑝 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
7 |
|
simpllr |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → 𝑑 = − ) |
8 |
7
|
eqcomd |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → − = 𝑑 ) |
9 |
8
|
oveqd |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 𝑑 𝑦 ) ) |
10 |
8
|
oveqd |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( 𝑦 − 𝑥 ) = ( 𝑦 𝑑 𝑥 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ↔ ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ) ) |
12 |
6 11
|
raleqbidva |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) → ( ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ) ) |
13 |
5 12
|
raleqbidva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ) ) |
14 |
6
|
adantr |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
15 |
8
|
oveqdr |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 𝑑 𝑦 ) ) |
16 |
8
|
oveqdr |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 − 𝑧 ) = ( 𝑧 𝑑 𝑧 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) ↔ ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) ) ) |
18 |
17
|
imbi1d |
⊢ ( ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
19 |
14 18
|
raleqbidva |
⊢ ( ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) → ( ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
20 |
6 19
|
raleqbidva |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) ∧ 𝑥 ∈ 𝑃 ) → ( ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
21 |
5 20
|
raleqbidva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
22 |
13 21
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
23 |
1 2 22
|
sbcie2s |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
24 |
|
df-trkgc |
⊢ TarskiGC = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |
25 |
23 24
|
elab4g |
⊢ ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |