Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑝 = 𝑃 ) |
5 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑑 = − ) |
6 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 − 𝑦 ) ) |
7 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( 𝑦 𝑑 𝑥 ) = ( 𝑦 − 𝑥 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) ) |
9 |
4 8
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) ) |
10 |
4 9
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) ) |
11 |
5
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( 𝑧 𝑑 𝑧 ) = ( 𝑧 − 𝑧 ) ) |
12 |
6 11
|
eqeq12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) ↔ ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
14 |
4 13
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
15 |
4 14
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
16 |
4 15
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
17 |
10 16
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑑 = − ) → ( ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
18 |
1 2 17
|
sbcie2s |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
19 |
|
df-trkgc |
⊢ TarskiGC = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |
20 |
18 19
|
elab4g |
⊢ ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |