Metamath Proof Explorer


Theorem istrkgcb

Description: Property of being a Tarski geometry - congruence and betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p 𝑃 = ( Base ‘ 𝐺 )
istrkg.d = ( dist ‘ 𝐺 )
istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion istrkgcb ( 𝐺 ∈ TarskiGCB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 istrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg.d = ( dist ‘ 𝐺 )
3 istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 simp1 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑝 = 𝑃 )
5 4 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑃 = 𝑝 )
6 5 adantr ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) → 𝑃 = 𝑝 )
7 6 adantr ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) → 𝑃 = 𝑝 )
8 7 adantr ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) → 𝑃 = 𝑝 )
9 8 adantr ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) → 𝑃 = 𝑝 )
10 9 adantr ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) → 𝑃 = 𝑝 )
11 5 ad6antr ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑃 = 𝑝 )
12 6 ad6antr ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) → 𝑃 = 𝑝 )
13 simpll3 ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) → 𝑖 = 𝐼 )
14 13 ad6antr ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → 𝑖 = 𝐼 )
15 14 eqcomd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → 𝐼 = 𝑖 )
16 15 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) )
17 16 eleq2d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
18 15 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑎 𝐼 𝑐 ) = ( 𝑎 𝑖 𝑐 ) )
19 18 eleq2d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ↔ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) )
20 17 19 3anbi23d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ↔ ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ) )
21 simpll2 ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) → 𝑑 = )
22 21 ad6antr ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → 𝑑 = )
23 22 eqcomd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → = 𝑑 )
24 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑥 𝑦 ) = ( 𝑥 𝑑 𝑦 ) )
25 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑎 𝑏 ) = ( 𝑎 𝑑 𝑏 ) )
26 24 25 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ↔ ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ) )
27 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑑 𝑧 ) )
28 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑏 𝑐 ) = ( 𝑏 𝑑 𝑐 ) )
29 27 28 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ↔ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) )
30 26 29 anbi12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ↔ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ) )
31 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑥 𝑢 ) = ( 𝑥 𝑑 𝑢 ) )
32 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑎 𝑣 ) = ( 𝑎 𝑑 𝑣 ) )
33 31 32 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ↔ ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ) )
34 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑦 𝑢 ) = ( 𝑦 𝑑 𝑢 ) )
35 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑏 𝑣 ) = ( 𝑏 𝑑 𝑣 ) )
36 34 35 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ↔ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) )
37 33 36 anbi12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ↔ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) )
38 30 37 anbi12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ↔ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) )
39 20 38 anbi12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) ↔ ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) ) )
40 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑧 𝑢 ) = ( 𝑧 𝑑 𝑢 ) )
41 23 oveqd ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( 𝑐 𝑣 ) = ( 𝑐 𝑑 𝑣 ) )
42 40 41 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ↔ ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) )
43 39 42 imbi12d ( ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) ∧ 𝑣𝑃 ) → ( ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
44 12 43 raleqbidva ( ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑐𝑃 ) → ( ∀ 𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
45 11 44 raleqbidva ( ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → ( ∀ 𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
46 10 45 raleqbidva ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) ∧ 𝑎𝑃 ) → ( ∀ 𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
47 9 46 raleqbidva ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) ∧ 𝑢𝑃 ) → ( ∀ 𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
48 8 47 raleqbidva ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑧𝑃 ) → ( ∀ 𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
49 7 48 raleqbidva ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) → ( ∀ 𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
50 6 49 raleqbidva ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) → ( ∀ 𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
51 5 50 raleqbidva ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ↔ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ) )
52 7 adantr ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) → 𝑃 = 𝑝 )
53 52 adantr ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑃 = 𝑝 )
54 13 ad3antrrr ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → 𝑖 = 𝐼 )
55 54 eqcomd ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → 𝐼 = 𝑖 )
56 55 oveqd ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) )
57 56 eleq2d ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
58 21 ad3antrrr ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → 𝑑 = )
59 58 eqcomd ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → = 𝑑 )
60 59 oveqd ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑑 𝑧 ) )
61 59 oveqd ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( 𝑎 𝑏 ) = ( 𝑎 𝑑 𝑏 ) )
62 60 61 eqeq12d ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ↔ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) )
63 57 62 anbi12d ( ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ 𝑧𝑃 ) → ( ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
64 53 63 rexeqbidva ( ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → ( ∃ 𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ∃ 𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
65 52 64 raleqbidva ( ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ 𝑎𝑃 ) → ( ∀ 𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ∀ 𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
66 7 65 raleqbidva ( ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) ∧ 𝑦𝑃 ) → ( ∀ 𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ∀ 𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
67 6 66 raleqbidva ( ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) ∧ 𝑥𝑃 ) → ( ∀ 𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ∀ 𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
68 5 67 raleqbidva ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ↔ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) )
69 51 68 anbi12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ) ↔ ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) ) )
70 1 2 3 69 sbcie3s ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) ↔ ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ) ) )
71 df-trkgcb TarskiGCB = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) }
72 70 71 elab4g ( 𝐺 ∈ TarskiGCB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( ( 𝑥 𝑦 ) = ( 𝑎 𝑏 ) ∧ ( 𝑦 𝑧 ) = ( 𝑏 𝑐 ) ) ∧ ( ( 𝑥 𝑢 ) = ( 𝑎 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑏 𝑣 ) ) ) ) → ( 𝑧 𝑢 ) = ( 𝑐 𝑣 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑎 𝑏 ) ) ) ) )