Metamath Proof Explorer


Theorem istrkge

Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p 𝑃 = ( Base ‘ 𝐺 )
istrkg.d = ( dist ‘ 𝐺 )
istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion istrkge ( 𝐺 ∈ TarskiGE ↔ ( 𝐺 ∈ V ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 istrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg.d = ( dist ‘ 𝐺 )
3 istrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 simpl ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝑝 = 𝑃 )
5 simpr ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝑖 = 𝐼 )
6 5 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑣 ) = ( 𝑥 𝐼 𝑣 ) )
7 6 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ↔ 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ) )
8 5 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑦 𝑖 𝑧 ) = ( 𝑦 𝐼 𝑧 ) )
9 8 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ↔ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ) )
10 7 9 3anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) ↔ ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) ) )
11 5 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑎 ) = ( 𝑥 𝐼 𝑎 ) )
12 11 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ↔ 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ) )
13 5 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑥 𝑖 𝑏 ) = ( 𝑥 𝐼 𝑏 ) )
14 13 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ↔ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ) )
15 5 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑎 𝑖 𝑏 ) = ( 𝑎 𝐼 𝑏 ) )
16 15 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ↔ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) )
17 12 14 16 3anbi123d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ↔ ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) )
18 4 17 rexeqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∃ 𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ↔ ∃ 𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) )
19 4 18 rexeqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ↔ ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) )
20 10 19 imbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
21 4 20 raleqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∀ 𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
22 4 21 raleqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∀ 𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
23 4 22 raleqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∀ 𝑧𝑝𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
24 4 23 raleqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∀ 𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
25 4 24 raleqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
26 1 3 25 sbcie2s ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) ↔ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )
27 df-trkge TarskiGE = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑝𝑏𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) }
28 26 27 elab4g ( 𝐺 ∈ TarskiGE ↔ ( 𝐺 ∈ V ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝐼 𝑧 ) ∧ 𝑥𝑢 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝐼 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝐼 𝑏 ) ) ) ) )