Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑝 = 𝑃 ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑃 = 𝑝 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) → 𝑃 = 𝑝 ) |
7 |
6
|
difeq1d |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ 𝑥 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑝 ∖ { 𝑥 } ) ) |
8 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝐼 = 𝑖 ) |
10 |
9
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 𝑖 𝑦 ) ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
12 |
9
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝑖 𝑦 ) ) |
13 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ) ) |
14 |
9
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
16 |
11 13 15
|
3orbi123d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
17 |
5 16
|
rabeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } = { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ) → { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } = { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) |
19 |
5 7 18
|
mpoeq123dva |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ) |
20 |
19
|
eqeq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ↔ ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ) ) |
21 |
1 3 20
|
sbcie2s |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ↔ ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) ) |
22 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝐺 → ( ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ↔ ( LineG ‘ 𝐺 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) ) |
23 |
21 22
|
bitrd |
⊢ ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ↔ ( LineG ‘ 𝐺 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) ) |
24 |
|
eqid |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } |
25 |
23 24
|
elab4g |
⊢ ( 𝐺 ∈ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ↔ ( 𝐺 ∈ V ∧ ( LineG ‘ 𝐺 ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) ) |