Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
Assertion | istvc | ⊢ ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | fveq2 | ⊢ ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = ( Scalar ‘ 𝑊 ) ) | |
3 | 2 1 | eqtr4di | ⊢ ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = 𝐹 ) |
4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑊 → ( ( Scalar ‘ 𝑥 ) ∈ TopDRing ↔ 𝐹 ∈ TopDRing ) ) |
5 | df-tvc | ⊢ TopVec = { 𝑥 ∈ TopMod ∣ ( Scalar ‘ 𝑥 ) ∈ TopDRing } | |
6 | 4 5 | elrab2 | ⊢ ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) ) |