Metamath Proof Explorer


Theorem istvc

Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion istvc ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) )

Proof

Step Hyp Ref Expression
1 tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
2 fveq2 ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = ( Scalar ‘ 𝑊 ) )
3 2 1 eqtr4di ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = 𝐹 )
4 3 eleq1d ( 𝑥 = 𝑊 → ( ( Scalar ‘ 𝑥 ) ∈ TopDRing ↔ 𝐹 ∈ TopDRing ) )
5 df-tvc TopVec = { 𝑥 ∈ TopMod ∣ ( Scalar ‘ 𝑥 ) ∈ TopDRing }
6 4 5 elrab2 ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) )