Step |
Hyp |
Ref |
Expression |
1 |
|
ucnval |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) ) |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
5 |
3 4
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
7
|
rexralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
10 |
9
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
11 |
2 10
|
bitrdi |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
12 |
|
elfvex |
⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → 𝑌 ∈ V ) |
13 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
14 |
|
elmapg |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
15 |
12 13 14
|
syl2anr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
16 |
15
|
anbi1d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
17 |
11 16
|
bitrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |