Step |
Hyp |
Ref |
Expression |
1 |
|
isucn2.u |
⊢ 𝑈 = ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) |
2 |
|
isucn2.v |
⊢ 𝑉 = ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) |
3 |
|
isucn2.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
4 |
|
isucn2.2 |
⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
5 |
|
isucn2.3 |
⊢ ( 𝜑 → 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
6 |
|
isucn2.4 |
⊢ ( 𝜑 → 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
7 |
|
isucn |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
9 |
|
breq |
⊢ ( 𝑣 = 𝑠 → ( ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑣 = 𝑠 → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
12 |
11
|
rexralbidv |
⊢ ( 𝑣 = 𝑠 → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
|
ssfg |
⊢ ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) → 𝑆 ⊆ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) |
16 |
15 2
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑆 ⊆ 𝑉 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑆 ⊆ 𝑉 ) |
19 |
18
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑉 ) |
20 |
12 13 19
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝑈 ) |
22 |
21 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) |
23 |
|
elfg |
⊢ ( 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ( 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ↔ ( 𝑢 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) ) ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ↔ ( 𝑢 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) ) ) |
25 |
24
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) → ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) |
26 |
22 25
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 ) |
27 |
|
ssbr |
⊢ ( 𝑟 ⊆ 𝑢 → ( 𝑥 𝑟 𝑦 → 𝑥 𝑢 𝑦 ) ) |
28 |
27
|
imim1d |
⊢ ( 𝑟 ⊆ 𝑢 → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
30 |
29
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
31 |
30
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
32 |
|
ralim |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
32
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
34 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
35 |
31 33 34
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ 𝑟 ⊆ 𝑢 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
36 |
35
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 ⊆ 𝑢 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
37 |
36
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∃ 𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
39 |
26 38
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
40 |
|
r19.37v |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
42 |
41
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
44 |
20 43
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
46 |
|
ssfg |
⊢ ( 𝑅 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → 𝑅 ⊆ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) |
47 |
5 46
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( ( 𝑋 × 𝑋 ) filGen 𝑅 ) ) |
48 |
47 1
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
49 |
|
ssrexv |
⊢ ( 𝑅 ⊆ 𝑈 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
50 |
|
breq |
⊢ ( 𝑟 = 𝑢 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑢 𝑦 ) ) |
51 |
50
|
imbi1d |
⊢ ( 𝑟 = 𝑢 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
52 |
51
|
2ralbidv |
⊢ ( 𝑟 = 𝑢 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
53 |
52
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
54 |
49 53
|
syl6ib |
⊢ ( 𝑅 ⊆ 𝑈 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
55 |
48 54
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
56 |
55
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
58 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) |
59 |
|
nfra1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) |
60 |
58 59
|
nfan |
⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
|
nfv |
⊢ Ⅎ 𝑠 𝑣 ∈ 𝑉 |
62 |
60 61
|
nfan |
⊢ Ⅎ 𝑠 ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) |
63 |
|
rspa |
⊢ ( ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
64 |
63
|
ad5ant24 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) |
65 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
66 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → 𝑠 ∈ 𝑆 ) |
67 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → 𝑠 ⊆ 𝑣 ) |
68 |
|
ssbr |
⊢ ( 𝑠 ⊆ 𝑣 → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
69 |
68
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
70 |
69
|
imim2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
71 |
70
|
ralimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
72 |
71
|
ralimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
73 |
72
|
reximdv |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
74 |
65 66 67 73
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ( ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
75 |
64 74
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑠 ⊆ 𝑣 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
76 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
77 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
78 |
77 2
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) |
79 |
|
elfg |
⊢ ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) → ( 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ↔ ( 𝑣 ⊆ ( 𝑌 × 𝑌 ) ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) ) ) |
80 |
79
|
simplbda |
⊢ ( ( 𝑆 ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ∧ 𝑣 ∈ ( ( 𝑌 × 𝑌 ) filGen 𝑆 ) ) → ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) |
81 |
76 78 80
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣 ) |
82 |
62 75 81
|
r19.29af |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
83 |
82
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
84 |
83
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
85 |
57 84
|
syld |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
86 |
85
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
87 |
45 86
|
impbida |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) |
88 |
87
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
89 |
8 88
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |