Step |
Hyp |
Ref |
Expression |
1 |
|
isufd.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
isufd.i |
⊢ 𝐼 = ( PrmIdeal ‘ 𝑅 ) |
3 |
|
isufd.3 |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
4 |
|
isufd.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( AbsVal ‘ 𝑟 ) = ( AbsVal ‘ 𝑅 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( AbsVal ‘ 𝑟 ) = 𝐴 ) |
7 |
6
|
neeq1d |
⊢ ( 𝑟 = 𝑅 → ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( PrmIdeal ‘ 𝑟 ) = ( PrmIdeal ‘ 𝑅 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( PrmIdeal ‘ 𝑟 ) = 𝐼 ) |
10 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
12 |
11
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( 0g ‘ 𝑟 ) } = { 0 } ) |
13 |
12
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { { ( 0g ‘ 𝑟 ) } } = { { 0 } } ) |
14 |
9 13
|
difeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) = ( 𝐼 ∖ { { 0 } } ) ) |
15 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( RPrime ‘ 𝑟 ) = ( RPrime ‘ 𝑅 ) ) |
16 |
15 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( RPrime ‘ 𝑟 ) = 𝑃 ) |
17 |
16
|
ineq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) = ( 𝑖 ∩ 𝑃 ) ) |
18 |
17
|
neeq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ↔ ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) ) |
19 |
14 18
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ↔ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) ) |
20 |
7 19
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) ↔ ( 𝐴 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) ) ) |
21 |
|
df-ufd |
⊢ UFD = { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) } |
22 |
20 21
|
elrab2 |
⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ CRing ∧ ( 𝐴 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) ) ) |