Metamath Proof Explorer


Theorem isufd2

Description: Alternate definition of unique factorization domains, using integral domains, for nonzero rings. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses isufd2.1 𝐼 = ( PrmIdeal ‘ 𝑅 )
isufd2.2 𝑃 = ( RPrime ‘ 𝑅 )
isufd2.3 0 = ( 0g𝑅 )
Assertion isufd2 ( 𝑅 ∈ NzRing → ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 isufd2.1 𝐼 = ( PrmIdeal ‘ 𝑅 )
2 isufd2.2 𝑃 = ( RPrime ‘ 𝑅 )
3 isufd2.3 0 = ( 0g𝑅 )
4 eqid ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 )
5 4 1 2 3 isufd ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )
6 isidom ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )
7 4 abvn0b ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) )
8 7 baib ( 𝑅 ∈ NzRing → ( 𝑅 ∈ Domn ↔ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) )
9 8 anbi2d ( 𝑅 ∈ NzRing → ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ↔ ( 𝑅 ∈ CRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) ) )
10 6 9 bitrid ( 𝑅 ∈ NzRing → ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) ) )
11 10 anbi1d ( 𝑅 ∈ NzRing → ( ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ↔ ( ( 𝑅 ∈ CRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )
12 anass ( ( ( 𝑅 ∈ CRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ↔ ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )
13 11 12 bitr2di ( 𝑅 ∈ NzRing → ( ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )
14 5 13 bitrid ( 𝑅 ∈ NzRing → ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑖𝑃 ) ≠ ∅ ) ) )