| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ufil | ⊢ UFil  =  ( 𝑦  ∈  V  ↦  { 𝑧  ∈  ( Fil ‘ 𝑦 )  ∣  ∀ 𝑥  ∈  𝒫  𝑦 ( 𝑥  ∈  𝑧  ∨  ( 𝑦  ∖  𝑥 )  ∈  𝑧 ) } ) | 
						
							| 2 |  | pweq | ⊢ ( 𝑦  =  𝑋  →  𝒫  𝑦  =  𝒫  𝑋 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝐹 )  →  𝒫  𝑦  =  𝒫  𝑋 ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑧  =  𝐹  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝐹 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝐹 )  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝐹 ) ) | 
						
							| 6 |  | difeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ∖  𝑥 )  =  ( 𝑋  ∖  𝑥 ) ) | 
						
							| 7 |  | eleq12 | ⊢ ( ( ( 𝑦  ∖  𝑥 )  =  ( 𝑋  ∖  𝑥 )  ∧  𝑧  =  𝐹 )  →  ( ( 𝑦  ∖  𝑥 )  ∈  𝑧  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝐹 )  →  ( ( 𝑦  ∖  𝑥 )  ∈  𝑧  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 9 | 5 8 | orbi12d | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝐹 )  →  ( ( 𝑥  ∈  𝑧  ∨  ( 𝑦  ∖  𝑥 )  ∈  𝑧 )  ↔  ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) | 
						
							| 10 | 3 9 | raleqbidv | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝐹 )  →  ( ∀ 𝑥  ∈  𝒫  𝑦 ( 𝑥  ∈  𝑧  ∨  ( 𝑦  ∖  𝑥 )  ∈  𝑧 )  ↔  ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( Fil ‘ 𝑦 )  =  ( Fil ‘ 𝑋 ) ) | 
						
							| 12 |  | fvex | ⊢ ( Fil ‘ 𝑦 )  ∈  V | 
						
							| 13 |  | elfvdm | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  dom  Fil ) | 
						
							| 14 | 1 10 11 12 13 | elmptrab2 | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) |